Turán problems and shadows III: expansions of graphs

Alexandr Kostochka∗ Dhruv Mubayi† Jacques Verstraëte‡

February 25, 2015

Abstract

The expansion G^+ of a graph G is the 3-uniform hypergraph obtained from G by enlarging each edge of G with a new vertex disjoint from $V(G)$ such that distinct edges are enlarged by distinct vertices. Let $\text{ex}_3(n,F)$ denote the maximum number of edges in a 3-uniform hypergraph with n vertices not containing any copy of a 3-uniform hypergraph F. The study of $\text{ex}_3(n,G^+)$ includes some well-researched problems, including the case that F consists of k disjoint edges [6], G is a triangle [5, 9, 18], G is a path or cycle [12, 13], and G is a tree [7, 8, 10, 11, 14]. In this paper we initiate a broader study of the behavior of $\text{ex}_3(n,G^+)$. Specifically, we show

$$\text{ex}_3(n,K_{t,t}^+) = \Theta(n^{3-3/s})$$

whenever $t > (s-1)!$ and $s \geq 3$. One of the main open problems is to determine for which graphs G the quantity $\text{ex}_3(n,G^+)$ is quadratic in n. We show that this occurs when G is any bipartite graph with Turán number $o(n^2)$ where $\varphi = \frac{1+\sqrt{5}}{2}$, and in particular, this shows $\text{ex}_3(n,G^+) = O(n^2)$ when G is the three-dimensional cube graph.

1 Introduction

An r-uniform hypergraph F, or simply r-graph, is a family of r-element subsets of a finite set. We associate an r-graph F with its edge set and call its vertex set $V(F)$. Given an r-graph F, let $\text{ex}_r(n,F)$ denote the maximum number of edges in an r-graph on n vertices that does not contain F. The expansion of a graph G is the 3-graph G^+ with edge set $\{e \cup \{v_e\} : e \in G\}$ where v_e are distinct vertices not in $V(G)$. By definition, the expansion of G has exactly $|G|$ edges. Note that Füredi and Jiang [10, 11] used a notion of expansion to r-graphs for general r, but this paper considers only 3-graphs.

Expansions include many important hypergraphs who extremal functions have been investigated, for instance the celebrated Erdős-Ko-Rado Theorem [6] for 3-graphs is the case of expansions of a matching. A well-known result is that $\text{ex}_3(n,K_3^+) = \binom{n-1}{2}$ [5, 9, 18]. If a graph is not 3-colorable

∗University of Illinois at Urbana–Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. E-mail: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-1266016 and by grants 12-01-00631 and 12-01-00448 of the Russian Foundation for Basic Research.

†Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607. E-mail: mubayi@uic.edu. Research partially supported by NSF grants DMS-0969092 and DMS-1300138.

‡Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA. E-mail: jverstra@math.ucsd.edu. Research supported by NSF Grant DMS-1101489.
then its expansion has positive Turán density and this case is fairly well understood [16, 19], so we focus on the case of expansions of 3-colorable graphs. It is easy to see that $\text{ex}_3(n, G^+) = \Omega(n^2)$ unless G is a star (the case that G is a star is interesting in itself, and for $G = P_2$ determining $\text{ex}_3(n, G^+)$ constituted a conjecture of Erdős and Sós [7] which was solved by Frankl [8]). The authors [13] had previously determined $\text{ex}_3(n, G^+) = \Omega(n^2)$ when G is a forest asymptotically in [14], thus settling a conjecture of Füredi [10]. The following straightforward result provides general bounds for $\text{ex}_3(n, G^+)$ in terms of the number of edges of G.

Proposition 1.1. If G is any graph with v vertices and $f \geq 4$ edges, then for some $a > 0$,

$$an^{3-\frac{3v-9}{f-3}} \leq \text{ex}_3(n, G^+) \leq (n-1)\text{ex}_2(n, G) + (f + v - 1)\binom{n}{2}.$$

The proof of Proposition 1.1 is given in Section 3. Some key remarks are that $\text{ex}_3(n, G^+)$ is not quadratic in n if $f > 3v - 6$, and if G is not bipartite then the upper bound in Proposition 1.1 is cubic in n. This suggests the question of identifying the graphs G for which $\text{ex}_3(n, G^+) = O(n^2)$, and in particular evaluation of $\text{ex}_3(n, G^+)$ for planar G.

1.1 Expansions of planar graphs

We give a straightforward proof of the following proposition, which is a special case of a more general result of Füredi [10] for a larger class of triple systems.

Proposition 1.2. Let G be a graph with treewidth at most two. Then $\text{ex}_3(n, G^+) = O(n^2)$.

On the other hand, there are 3-colorable planar graphs G for which $\text{ex}_3(n, G^+)$ is not quadratic in n. To state this result, we need a definition. A proper k-coloring $\chi : V(G) \to \{1, \ldots, k\}$ is acyclic if every pair of color classes induces a forest in G. We pose the following question:

Question 1. Does every planar graph G with an acyclic 3-coloring have $\text{ex}_3(n, G^+) = O(n^2)$?

Let $g(n, k)$ denote the maximum number of edges in an n-vertex graph of girth larger than k.

Proposition 1.3. Let G be a planar graph such that in every proper 3-coloring of G, every pair of color classes induces a subgraph containing a cycle of length at most k. Then $\text{ex}_3(n, G^+) = \Omega(n^2 + \Theta(\frac{1}{k}))$.

The last statement follows from the known fact that $g(n, k) \geq n^{1+\Theta(\frac{1}{k})}$. The octahedron graph O is an example of a planar graph where in every proper 3-coloring, each pair of color classes induces a cycle of length four, and so $\text{ex}_3(n, O^+) = \Omega(n^{5/2})$. Even wheels do not have acyclic 3-colorings, and we do not know whether their expansions have quadratic Turán numbers.

Question 2. Does every even wheel G have $\text{ex}_3(n, G^+) = O(n^2)$?
1.2 Expansions of bipartite graphs

The behavior of $\text{ex}_3(n, G^\ast)$ when G is a dense bipartite graph is somewhat related to the behavior of $\text{ex}_2(n, G)$ according to Proposition 1.1. In particular, Proposition 1.1 shows for $t \geq s \geq 2$ and some constants $a, c > 0$ that

$$an^{3-\frac{3+3t-9}{s+t-4}} \leq \text{ex}_3(n, K_{s,t}^+) \leq cn^{3-\frac{1}{s+t-4}}.$$

We show that both the upper and lower bound can be improved to determine the order of magnitude of $\text{ex}_3(n, K_{s,t}^+)$ when good constructions of $K_{s,t}$-free graphs are available (see Alon, Rónyai and Szabo [2]):

Theorem 1.4. Fix $3 \leq s \leq t$. Then $\text{ex}_3(n, K_{s,t}^+) = O(n^{3-\frac{3}{s}})$ and, if $t > (s-1)! \geq 2$, then $\text{ex}_3(n, K_{s,t}^+) = \Theta(n^{3-\frac{3}{s}})$.

The following closely related problem was recently investigated by Alon and Shikhelman [3]. For a graph F, let $g(n, F)$ denote the maximum number of triangles in an n-vertex graph that contains no copy of F as a subgraph. From a graph G achieving this maximum, we can form a 3-graph H with $V(H) = V(G)$ and H consists of the triangles in G. Then a copy K of F^+ in H would yield a copy of F in G as $\partial K \supset F$. Consequently, we have

$$g(n, F) \leq \text{ex}_3(n, F^+).$$

Alon and Shikhelman [3] independently proved that for fixed $3 \leq s \leq t$ and $t > (s-1)!$ we have $g(n, K_{s,t}) = \Theta(n^{3-3/s})$. Their lower bound construction is exactly the same as ours, though the proofs are different.

The case of $K_{3,t}$ is interesting since $\text{ex}_3(n, K_{3,t}^+) = O(n^2)$, and perhaps it is possible to determine a constant c such that $\text{ex}_3(n, K_{3,3}^+) ~ cn^2$, since the asymptotic behavior of $\text{ex}_2(n, K_{3,3})$ is known, due to a construction of Brown [4] and the upper bounds of Füredi [10]. In general, the following bounds hold for expansions of $K_{3,t}$:

Theorem 1.5. For fixed $r \geq 1$ and $t = 2r^2 + 1$, we have $(1-o(1))\frac{t-1}{12}n^2 \leq \text{ex}_3(n, K_{3,t}^+) = O(n^2)$.

The upper bound in this theorem is a special case of a general upper bound for all graphs G with $\sigma(G^\ast) = 3$ (see Theorem 1.7). Finally, we prove a general result that applies to expansions of a large class of bipartite graphs.

Theorem 1.6. Let G be a graph with $\text{ex}_2(n, G) = o(n^\varphi)$, where $\varphi = (1 + \sqrt{5})/2$ is the golden ratio. Then $\text{ex}_3(n, G^\ast) = O(n^2)$.

Let Q be the graph of the 3-dimensional cube (with 8 vertices and 12 edges). Erdős and Simonovits [7] proved $\text{ex}_2(n, Q) = O(n^{1.6}) = o(n^\varphi)$, so a corollary to Theorem 1.6 is that

$$\text{ex}_3(n, Q^+) = \Theta(n^2).$$

Determining the growth rate of $\text{ex}_2(n, Q)$ is a longstanding open problem. Since it is known that for any graph G the 1-subdivision of G has Turán Number $O(n^{3/2})$ – see Alon, Krivelevich...
and Sudakov [1] – Theorem 1.6 also shows that for such graphs G, $\text{ex}_3(n, G^+) = \Theta(n^2)$. Erdős conjectured that $\text{ex}_2(n, G) = O(n^{3/2})$ for each 2-degenerate bipartite graph G. If this conjecture is true, then by Theorem 1.6, $\text{ex}_3(n, G^+) = O(n^2)$ for any 2-degenerate bipartite graph G.

1.3 Crosscuts

A set of vertices in a hypergraph containing exactly one vertex from every edge of a hypergraph is called a **crosscut** of the hypergraph, following Frankl and Füredi [9]. For a 3-uniform hypergraph F, let $\sigma(F)$ be the minimum size of a crosscut of F if it exists, i.e.,

$$\sigma(F) := \min\{|X| : \forall e \in F, |e \cap X| = 1\}$$

if such an X exists. Since the triple system consisting of all edges containing exactly one vertex from a set of size $\sigma(F) - 1$ does not contain F, we have

$$\text{ex}_3(n, F) \geq (\sigma(F) - 1 + o(1))\left(\begin{array}{c}n \\ 2 \end{array}\right). \tag{1}$$

An intriguing open question is: For which F an asymptotic equality is attained in (1)? Recall that a graph has tree-width at most two if and only if it has no subdivision of K_4. Informally, these are subgraphs of a planar graph obtained by starting with a triangle, and then picking some edge uv of the current graph, adding a new vertex w, and then adding the edges uw and vw.

Question 3. Is it true that

$$\text{ex}_3(n, G^+) \sim (\sigma(G^+) - 1)\left(\begin{array}{c}n \\ 2 \end{array}\right) \tag{2}$$

for every graph G with tree-width two?

If G is a forest or a cycle, then (2) holds [13, 14] (corresponding results for $r > 3$ were given by Füredi [10]). If G is a graph with $\sigma(G^+) = 2$, then again (2) holds [14]. Proposition 1.1 and Theorem 1.4 give examples of graphs G with $\sigma(G^+) = 4$ and $\text{ex}_3(n, G^+) \geq n^2$.

This leaves the case $\sigma(G^+) = 3$, and in this case, Theorem 1.5 shows that $\text{ex}_3(n, K_{3,t}^+)/n^2 \to \infty$ as $t \to \infty$, even though $\sigma(K_{3,t}^+) = 3$ for all $t \geq 3$. A quadratic upper bound for $\text{ex}_3(n, K_{3,t}^+)$ in Theorem 1.5 is a special case of the following theorem:

Theorem 1.7. For every G with $\sigma(G^+) = 3$, $\text{ex}_3(n, G^+) = O(n^2)$.

2 Preliminaries

Notation and terminology. A 3-graph is called a **triple system**. The edges will be written as unordered lists, for instance, xyz represents $\{x, y, z\}$. For a set X of vertices of a hypergraph H, let $H - X = \{e \in H : e \cap X = \emptyset\}$. If $X = \{x\}$, then we write $H - x$ instead of $H - X$. For
a set S of two vertices in a 3-graph H, $N_H(S) = \{x \in V(H) : S \cup \{x\} \in H\}$. The codegree of a pair $S = \{x, y\}$ of vertices in a 3-graph H is $d_H(x, y) = |N_H(S)|$. The shadow of H is the graph $\partial H = \{xy : \exists e \in H, \{x, y, e\} \subset e\}$. The edges of ∂H will be called the sub-edges of H. As usual, for a graph G and $v \in V(G)$, $N_G(v)$ is the set of neighbors of v in G and $d_G(v) = |N_G(v)|$.

A 3-graph H is d-full if every sub-edge of H has codegree at least d.

Thus H is d-full is equivalent to the fact that the minimum non-zero codegree in H is at least d. The following lemma from [14] extends the well-known fact that any graph G has a subgraph of minimum degree at least d with at least $|G| - (d - 1)|V(G)|$ edges.

Lemma 2.1. For $d \geq 1$, every n-vertex 3-graph H has a $(d + 1)$-full subgraph F with

$$|F| \geq |H| - d|\partial H|.$$

Proof. A d-sparse sequence is a maximal sequence $e_1, e_2, \ldots, e_m \in \partial H$ such that $d_H(e_1) \leq d$, and for all $i > 1$, e_i is contained in at most d edges of H which contain none of $e_1, e_2, \ldots, e_{i-1}$. The 3-graph F obtained by deleting all edges of H containing at least one of the e_i is $(d + 1)$-full. Since a d-sparse sequence has length at most $|\partial H|$, we have $|F| \geq |H| - d|\partial H|$.

3 Proofs of Propositions

Proof of Proposition 1.1. The proof of the lower bound in Proposition 1.1 is via a random triple system. The idea is to take a random graph not containing a particular graph G, and then observe that the triple system of triangles in the random graph does not contain G^+. Consider the random graph on n vertices, whose edges are placed independently with probability p, to be chosen later. If X is the number of triangles and Y is the number of copies of G in the random graph, then

$$\mathbb{E}(X) = p^3 \binom{n}{3} \quad \mathbb{E}(Y) \leq p^f n^v.$$

Therefore choosing $p = 0.1n^{-(v-3)/(f-3)}$, since $f \geq 4$, we find

$$\mathbb{E}(X - Y) \geq 0.0001n^{3-3(v-3)/(f-3)}.$$

Now let H be the triple system of vertex-sets of triangles in the graph obtained by removing one edge from each copy of G in the random graph. Then $\mathbb{E}(|H|) \geq \mathbb{E}(X - Y)$, and $G^+ \not\subseteq H$. Select an H so that $|H| \geq 0.0001n^{3-3(v-3)/(f-3)}$. This proves the lower bound in Proposition 1.1 with $a = 0.0001$.

Now suppose G is a bipartite graph with f edges e_1, e_2, \ldots, e_f and v vertices. If a triple system H on n vertices has more than $(n-1)\mathrm{ex}_2(n, G) + (f + v - 1)(\binom{n}{3})$ triples, then by deleting at most $(f + v - 1)(\binom{n}{3})$ triples we arrive at a triple system $H' \subset H$ which is $(f + v)$-full, by Lemma 2.1 and $|H'| > (n - 1)\mathrm{ex}_2(n, G)$. There exists $x \in V(H')$ such that more than $\mathrm{ex}_2(n, G)$ triples of H' contain x. So the graph of all pairs $\{w, y\}$ such that $\{w, x, y\} \in H'$ contains G. Since every
Proof of Theorem 1.6. Suppose \(e \in V(G) \) such \(e \cap \{z_i\} \in H' \) for all \(i = 1, 2, \ldots, f \), and this forms a copy of \(G^+ \) in \(H' \). \(\square \)

Proof of Proposition 1.2. Let \(G \) be a graph of tree-width two. Then \(G \subset F \), where \(F \) is a graph obtained from a triangle by repeatedly adding a new vertex and joining it to two adjacent vertices of the current graph. It is enough to show \(\text{ex}_3(n,F^+) = O(n^2) \). Suppose \(F \) has \(v \) vertices and \(f \) edges. By definition, \(F \) has a vertex \(x \) of degree two such that the neighbors \(x' \) and \(x'' \) of \(x \) are adjacent. Then \(F' := F - x \) has \(v-1 \) vertices and \(f-2 \) edges. Let \(H \) be an \(n \)-vertex triple system with more than \((v+f-1)(\frac{n}{2}) \) edges. By Lemma 2.1, \(H \) contains a \((v+f)\)-full subgraph \(H' \). We claim \(H' \) contains \(F^+ \). Inductively, \(H' \) contains a copy \(H'' \) of the expansion of \(F' \). By the definition of \(H' \), \(\{x', x''\} \) has a natural 3-coloring given by \(\phi \) with \(\phi(x'), \phi(x'') \) not in \(F \). Since \(H' \) is full, and therefore if \(z \) is a vertex of the current graph. It is enough to show \(\phi \) is large enough. Let \(n > 1 \) and \(m > \frac{n^2}{3} \). By Lemma 2.1, \(H \) has a \((v+f)\)-full subgraph \(H' \). We claim \(H' \) contains \(F^+ \). Inductively, \(H' \) contains a copy \(H'' \) of the expansion of \(F' \). By the definition of \(H' \), \(\{x', x''\} \) has codegree at least \(v+f \) in \(H' \). Therefore we may select a new vertex \(z \) that is not in \(H'' \) such that \(\{z, x', x''\} \) is an edge of \(H' \), and now \(F \) is embedded in \(H' \) by mapping \(x \) to \(z \). \(\square \)

Proof of Proposition 1.3. Let \(G \) be a 3-colorable planar graph with the given conditions. To show \(\text{ex}_3(n, G^+) = \Omega(n \text{ng}(n,k)) \), form a triple system \(H \) on \(n \) vertices as follows. Let \(F \) be a bipartite \([\frac{n}{2}] \)-vertex graph of girth \(k \) with at least \(\frac{1}{2}g(\frac{n}{2}, k) \) edges. Let \(U \) and \(V \) be the partite sets of \(F \). Let \(X \) be a set of \(\lfloor \frac{n}{2} \rfloor \) vertices disjoint from \(U \cup V \). Then set \(V(H) = U \cup V \cup X \) and let the edges of \(H \) consist of all triples \(e \cup \{x\} \) such that \(e \in F \) and \(x \in X \). Then

\[
|H| \geq |X| \cdot g(\lfloor \frac{n}{2} \rfloor, k) = \Omega(n \text{ng}(n,k)).
\]

Now \(\partial H \) has a natural 3-coloring given by \(U, V, X \). If \(G^+ \subset H \), then \(G \subset \partial H \) and therefore \(G \) is properly colored, with color classes \(V(G) \cap U, V(G) \cap V \) and \(V(G) \cap X \). By the assumptions on \(G, V(G) \cap (U \cup V) \) induces a subgraph of \(G \) which contains a cycle of length at most \(k \). However, that cycle is then a subgraph of \(F \), by the definition of \(H \), which is a contradiction. Therefore \(G^+ \not\subset H \). \(\square \)

4 Proof of Theorem 1.6

Proof of Theorem 1.6. Suppose \(\text{ex}_2(n, G) = o(n^2) \) and \(|G| = k \), and \(H \) is an \(G^+ \)-free 3-graph with \(|H| \geq (k+1)(\frac{n}{2}) \). By Lemma 2.1, \(H \) has a \(k \)-full-subgraph \(H_1 \) with at least \(n^2/3 \) edges. If \(G \subset \partial H_1 \), then we can expand \(G \) to \(G^+ \subset H_1 \) using that \(H_1 \) is \(k \)-full. Therefore \(|\partial H_1| \leq \text{ex}(n, G) = o(n^2) \). By Lemma 2.1, and since \(|H_1| \geq \delta n^2 \), \(H_1 \) has a non-empty \(n^2-\varphi \)-full subgraph \(H_2 \) if \(n \) is large enough. Let \(H_3 \) be obtained by removing all isolated vertices of \(H_2 \) and let \(m = |V(H_3)| \). Since \(H_3 \) is \(n^2-\varphi \)-full, \(m > n^2-\varphi \). Since \(H_3 \) is \(G^+ \)-free, \(H_3 \subset H_1 \) is also \(G^+ \)-free, and therefore if \(F = \partial H_3, |V(F)| = |V(H_3)| = m \) and \(|F| \leq \text{ex}_2(m, G) = o(m^2) \). So some vertex \(v \) of the graph \(F = \partial H_3 \) has degree \(o(m^{\varphi-1}) \). Now the number of edges of \(F \) between the vertices of \(N_F(v) \) is at least the number of edges of \(H_3 \) containing \(v \). Since \(H_3 \) is
n^{2-\varphi}.full, there are at least $\frac{1}{2}n^{2-\varphi}|N_F(v)|$ such edges. On the other hand, since the subgraph of F induced by $N_F(v)$ does not contain G, the number of such edges is $o(|N_F(v)|^\varphi)$. It follows that $n^{2-\varphi} = o(|N_F(v)|^{\varphi-1})$. Since $|N_F(v)| = o(m^{\varphi-1}) = o(n^{\varphi-1})$, we get $2 - \varphi < (\varphi - 1)^2$, contradicting the fact that φ is the golden ratio. \square

5 Proof of Theorem 1.4

Proof of Theorem 1.4. For the upper bound, we repeat the proof of Theorem 1.6 when $F = K_{s,t}$, using the bounds $ex_2(n, K_{s,t}) = O(n^{2-1/s})$ provided by the Kövári-Sós-Turán Theorem [15], except at the stage of the proof where we use the bound on $ex_2(|N_G(v)|, F)$, we may now use

$$ex_2(|N_G(v)|, K_{s-1,t}) = O(|N_G(v)|^{2-1/(s-1)})$$

for if the subgraph of G of edges between $N_G(v)$ contains $K_{s-1,t}$, then by adding v we see G contains $K_{s,t}$. A calculation gives $|H| = O(n^{3-3/s})$.

For the lower bound we must show that $ex_3(n, K_{s,t}^+) = \Omega(n^{3-3/s})$ if $t > (s-1)!$. We will use the **projective norm graphs** defined by Alon, Rónyai and Szabo [2]. Given a finite field \mathbb{F}_q and an integer $s \geq 2$, the norm is the map $N : \mathbb{F}_{q^s-1}^* \rightarrow \mathbb{F}_q^*$ given by $N(x) = x^{1+q+\ldots+q^{s-2}}$. The norm is a (multiplicative) group homomorphism and is the identity map on elements of \mathbb{F}_q^*. This implies that for each $x \in \mathbb{F}_q^*$, the number of preimages of x is exactly

$$\frac{q^{s-1}-1}{q-1} = 1 + q + \ldots + q^{s-2}. \quad (3)$$

Definition 5.1. Let q be a prime power and $s \geq 2$ be an integer. The projective norm graph $PG(q,s)$ has vertex set $V = \mathbb{F}_{q^s-1}^* \times \mathbb{F}_q^*$ and edge set

$$\{(A,b) : N(AB) = ab\}.$$

Lemma 5.2. Fix an integer $s \geq 3$ and a prime power q. Let $x \in \mathbb{F}_q^*$, and $A,B \in \mathbb{F}_{q^s-1}^*$ with $A \neq B$. Then the number of $C \in \mathbb{F}_{q^s-1}^*$ with

$$N \left(\begin{array}{c} A+C \\ B+C \end{array} \right) = x \quad (4)$$

is at least q^{s-2}.

Proof. By (3) there exist distinct $X_1, \ldots, X_{q^{s-2}+1} \in \mathbb{F}_{q^s-1}^*$ such that $N(X_i) = x$ for each i. As long as $X_i \neq 1$, define

$$C_i = \frac{BX_i - A}{1 - X_i}.$$

Then $(A + C_i)/(B + C_i) = X_i$, and $C_i \neq C_j$ for $i \neq j$ since $A \neq B$. \square
Lemma 5.3. Fix an integer \(s \geq 3 \) and a prime power \(q \). The number of triangles in \(PG(q, s) \) is at least \((1 - o(1))q^{3s - 3}/6\) as \(q \to \infty \).

Proof. Pick a vertex \((A, a)\) and then one of its neighbors \((B, b)\). The number of ways to do this is at least \(q^{s-1}(q-1)(q^s-1)\). Let \(x = a/b \) and apply Lemma 5.2 to obtain at least \(q^{s-2} - 2\) distinct \(C \notin \{-A, -B\} \) satisfying (4). For each such \(C \), define
\[
c = \frac{N(A + C)}{a} = \frac{N(B + C)}{b}.
\]
Then \((C, c)\) is adjacent to both \((A, a)\) and \((B, b)\). Each triangle is counted six times in this way and the result follows. \(\square\)

For appropriate \(n \) the \(n \)-vertex norm graphs \(PG(q, s) \) (for fixed \(s \) and large \(q \)) have \(\Theta(n^{3-3/s}) \) edges and no \(K_{s,t} \). By Lemma 5.3 the number of triangles in \(PG(q, s) \) is \(\Theta(n^{3-3/s}) \). The hypergraph \(H \) whose edges are the vertex sets of triangles in \(PG(q, s) \) is a 3-graph with \(\Theta(n^{3-3/s}) \) edges and no \(K_{s,t} \). This completes the proof of Theorem 1.4. \(\square\)

6 Proof of Theorems 1.5 and 1.7

We need the following result.

Theorem 6.1. Let \(F \) be a 3-uniform hypergraph with \(v \) vertices and \(\text{ex}_3(n,F) < c\binom{n}{2} \). Then \(\text{ex}_3(n, (\partial F)^+) < (c + v + |F|)(\binom{n}{2}) \).

Proof. Suppose we have an \(n \) vertex 3-uniform hypergraph \(H \) with \(|H| > (c + v + |H|)\binom{n}{2} \). Apply Lemma 2.1 to obtain a subhypergraph \(H' \subset H \) that is \((v + |F|)-full\) with \(|H'| > c\binom{n}{2} \). By definition, we may find a copy of \(F \subset H' \) and hence a copy of \(\partial F \subset \partial H' \). Because \(H' \) is \((v + |F|)-full\), we may expand this copy of \(\partial F \) to a copy of \((\partial F)^+ \subset H' \subset H \) as desired. \(\square\)

Define \(H_t \) to be the 3-uniform hypergraph with vertex set \(\{a, b, x_1, y_1, \ldots, x_t, y_t\} \) and 2\(t \) edges \(x_i y_i a \) and \(x_i y_i b \) for all \(i \in [t] \). It is convenient (though not necessary) for us to use the following theorem of the authors [17].

Theorem 6.2. ([17]) For each \(t \geq 2 \), we have \(\text{ex}_3(n, H_t) < t^4 \binom{n}{2} \).

Proof of Theorems 1.5 and 1.7. First we prove the upper bound in Theorem 1.7. Suppose \(\sigma(G^+) \leq 3 \). This means that \(G \) has an independent set \(I \) and set \(R \) of edges such that \(I \) intersects each edge in \(G - R \), and \(|I| + |R| \leq 3 \). It follows that \(G \) is a subgraph of one of the following graphs (Cases (i) and (ii) correspond to \(|I| = 1 \), Case (iii) corresponds to \(|I| = 2 \), and Case (iv) corresponds to \(|I| = 3 \):
Theorems 6.1 and 6.2 and observe that \(\partial H \)
triples in \(H \)
Similarly, \(H \)
Then the shadow of the set of triples in \(H \)
For the lower bound in Theorem 1.5, we use a slight modification of the construction in Theorem 1.4.
Lemma 2.1, we find a \(N \)
A number of examples of 3-colorable \(G \)
In this paper we studied \(\text{ex}_3(n, G^+) \) where \(G \) is a 3-colorable graph. If \(G \) has treewidth two, then we believe \(\text{ex}_3(n, G^+) \sim (\sigma(G^+))^{n+1} \) (Question 3), and if a planar graph \(G \) has an acyclic 3-coloring, then we believe \(\text{ex}_3(n, G^+) = O(n^2) \) (Question 1). In fact, we also do not know any nonplanar acyclically 3-colorable graph \(G \) with superquadratic \(\text{ex}_3(n, G^+) \). We are also not able to prove or disprove \(\text{ex}_3(n, G^+) = O(n^2) \) when \(G \) is an even wheel (Question 2).
This is equivalent to showing that if \(F \) is an \(n \)-vertex graph with a superquadratic number of triangles, then \(F \) contains every even wheel with a bounded number of vertices.

7 Concluding remarks

- In this paper we studied \(\text{ex}_3(n, G^+) \) where \(G \) is a 3-colorable graph. If \(G \) has treewidth two, then we believe \(\text{ex}_3(n, G^+) \sim (\sigma(G^+))^{n+1} \) (Question 3), and if a planar graph \(G \) has an acyclic 3-coloring, then we believe \(\text{ex}_3(n, G^+) = O(n^2) \) (Question 1). In fact, we also do not know any nonplanar acyclically 3-colorable graph \(G \) with superquadratic \(\text{ex}_3(n, G^+) \). We are also not able to prove or disprove \(\text{ex}_3(n, G^+) = O(n^2) \) when \(G \) is an even wheel (Question 2).

- A number of examples of 3-colorable \(G \) with superquadratic \(\text{ex}_3(n, G^+) \) were given. In particular we determined the order of magnitude of \(\text{ex}_3(n, K_{3,t}^+) \) when near-extremal constructions of
$K_{s,t}$-free bipartite graphs are known. One may ask for the asymptotic behavior of $\text{ex}_3(n, K_{s,t}^+)$ for each $t \geq 3$, since in that case we have shown $\text{ex}_3(n, K_{3,t}^+) = \Theta(n^2)$. Finally, we gave a general upper bound on $\text{ex}_3(n, G^+)$ when G is a bipartite graph, and showed that if G has Turán number much smaller than n^2 where φ is the golden ratio, then $\text{ex}_3(n, G^+) = O(n^2)$. Determining exactly when $\text{ex}_3(n, G^+)$ is quadratic in n remains an open problem for further research.

Acknowledgment. We thank the referees for the helpful comments.

References

