CAKE-CUTTING

OBJECTIVE
The ability to fairly divide a cake among n-people is a great concern of individuals with siblings. Apparently, the problem of getting a fair share of cakes is more important than it sounds. This topic has moved beyond the kitchen and was introduced into the world of mathematics by Hugo Steinhaus on September 17, 1947. In this final, I will explore the methods in which a cake can be divided equally among n-people.

SOURCES
1) www.mathworld.com
2) Cake-Cutting Algorithms: Be Fair If You Can
 by Jack Robertson and William Webb

WITH HELP FROM
Professor JOHN WAVRIK and STEFAN ERICKSON

NOTE
This final contains two bit-map images that have been created by me.
So, please use a computer that supports bit-map image.
The computers in the lab do not support bit-map images and overwrite the file leaving out the images.

In this section, I am exploring several possible algorithms that one can use to equally divide cakes.

POSSIBLE ALGORITHMS FOR FAIR DIVISION OF CAKES

CUT & CHOOSE algorithm (2 people)
Step1 - person1 cut the cake
Step2 - person2 chooses first
and the remaining piece goes to person1

OUTCOMES *(This algorithm uses (n-1) cuts)*
Person2 will always benefit despite the fact that the cake is or isn’t divided equally. If person1 slips and cut one piece of the cake bigger than the other, person2 will benefit from choosing the bigger piece since person2 gets to choose first. Therefore, it is in the benefit of person1 to cut the cake as equally as he can.

DOESN’T CUT IT algorithm (3 people)

Step1 - person1 cuts a cake into two pieces so that pieceA=1/3 of the cake and pieceB=2/3 of the cake
Step2 - person2 cuts pieceB into two equal pieces so that pieceB1=1/3=pieceB2 of the cake
Step3 - person3 chooses one of three pieces (pieceA, pieceB1, or pieceB2)
 then person1 chooses next
 and the last piece goes to person2

OUTCOMES *(This algorithm uses (n-1) cuts)*
Person3 has the greatest advantage followed by person1 and person2, respectively. If person1 does not cut the cake into two pieces that are 1/3 and 2/3 of the cake, person3 will benefit from choosing the piece that is >1/3 and leaving the piece that is < 2/3 to be divided among person1 and person2. In this case, person1 and person2 will not be able to get their fair share of the cake. In the second case, if person1 has cut the cake correctly but person2 does not divide the piece that is =2/3 of the cake into two equal pieces that are 1/3 each, then person3 will choose the piece that is >1/3, person1 will choose the piece that =1/3, and person2 is left with a piece that is <1/3. Therefore, person2 will always get the disadvantages unless both person1 and person2 cuts the cake evenly into three pieces that are =1/3 of the cake so that all three persons will be happy.

MOVING KNIFE algorithm (n people)

Step1 - person1 place the knife on the left end of the cake and continuously moves the knife to the right
- any other player can say “STOP” when he believes that the portion to the left of the knife is 1/n of the cake
and that piece is given to the player who said "STOP"
and the player is out
- if more than one players say "STOP,"
 then the piece can go to any one of the players
Step2 to (n-1)
- Step1 is repeated for the remaining portion of the cake
 by the remaining players
Stepn - Since there is only one player left, he gets the last piece

OUTCOMES (This algorithm uses (n-1) cuts)
This is not a good algorithm for fair division of cakes because
there are three disadvantages in using this algorithm to divide
cakes. One, the players may take advantage of the method and
say "STOP" when the left portion is more than 1/n of the cake.
Second, players who said "STOP" at the same time may argue
over who gets the piece. Third, it is unfair for the last player
because he is assigned the last piece of the cake despite its
size. The last player will be the one to get the smallest portion
because, when it comes to the last two players, the cutter has to
keep the knife moving until the other player say "STOP."
However, the other player does not have to say stop until he
wants to and this gives him the authority to say stop when the
remaining portion to the right of the cake is really small.
Therefore, this algorithm does not have any "check and balance"
system to maintain equality among the players.

TRIMMING algorithm (n people)
Step1 - person1 cuts a piece, 1/n of the cake
Step2 - this piece is passed successively to
 person2, person3,...,person(n-1)
 - anyone who thinks the piece is bigger than 1/n trims
 so that it is 1/n according to the trimmer.
Step3 - person(n) takes the trimmed piece
 if he thinks it is at least 1/n of the cake
 - otherwise the trimmed piece goes to the last trimmer
Step4 - repeat Step1 to Step3 on the remaining portion of cake
 with n replaced by (n-1)
 - repeat until only one player left
OUTCOMES (This algorithm uses indefinite cuts)
This is not a sufficient way of fairly dividing cakes into n-pieces. By trimming the cake, the players will end up with small/little pieces or even crumbs as their share of the cake. Also, this method can take a really long time to finish because the players may not agree to each of the portions until these portions become little pieces of crumbs.

Now that we know how to divide cakes equally among n-people. Let's explore the ways in which we could divide cakes equally among two families with unequal number of members using the Ramsey Partitions. The purpose of the Ramsey Partition is to divide a cake into \(k_1/n \) and \(k_2/n \) where \(n = k_1 + k_2 \). In other words, the cake has to be divided into a ratio of \(k_1:k_2 \) for familyA:familyB.

RAMSEY PARTITIONS

RAMSEY PARTITION algorithm

Step1 - With the ratio \(k_1:k_2 \) given,

choose any Ramsey partition for the ratio \(k_1:k_2 \)

Step2 - Ask either player to cut the cake

in the ratios given in the Ramsey partition

Step3 - Ask the non-cutter to indicate which pieces

are acceptable

Step4 - Assign the non-cutter pieces chosen from

the acceptable ones whose values sum to

the non-cutter's portion and the cutter

takes the remaining pieces

Below is an EXAMPLE of a RAMSEY PARTITION:

Let familyA=k1=8 and familyB=k2=5 thus, the entire cake is 8+5=13. For the table below, the letters (A or B) to the right of a number indicates that this piece has been chosen by family A or B. Also, the number inside the { } indicates pieces that are selected from the previous steps.

Starting with a cake of 13/13, the Ramsey Partition below requires 5-cuts/steps.

(1) FamilyB makes the first cut to divide the cake into two pieces: 8/13 and 5/13. Then familyA gets to pick.

If familyA thinks that one of the pieces is worth at least 8/13 of the cake, then familyA will pick that piece and the 5/13 goes to familyB. The division process stops here because, now, familyA has {8/13} and familyB has {5/13}.

However, if familyA does not think that any of the pieces is at least 8/13 of the cake, then familyA will take the piece that is at least 5/13. Now, familyA has {5/13} and the piece that is 8/13 is divided in step(2).

(2) FamilyA cuts the remaining piece into two pieces: 5/13 and 3/13. Then familyB gets to pick.

If familyB thinks that one of the pieces is worth at least 5/13 of the cake, then familyB will pick that piece and the 3/13 goes to familyA. The division process stops here because, now, familyA has {5/13, 3/13} and familyB has {5/13}.

However, if familyB does not think that any of the pieces is at least 5/13 of the cake, then familyB will take the piece that is at least 3/13. Now, familyA has {5/13}, familyB has {3/13} and the piece that is 5/13 is divided in step(3).

(3) FamilyB cuts the remaining piece into two pieces: 3/13 and 2/13. Then familyA gets to pick.
If familyA thinks that one of the pieces is worth at least $\frac{3}{13}$ of the cake, then familyA will pick that piece and the $\frac{2}{13}$ goes to familyB. The division process stops here because, now, familyA has $\{\frac{5}{13}, \frac{3}{13}\}$ and familyB has $\{\frac{3}{13}, \frac{2}{13}\}$.

However, if familyA does not think that any of the pieces is at least $\frac{3}{13}$ of the cake, then familyA will take the piece that is at least $\frac{2}{13}$. Now, familyA has $\{\frac{5}{13}, \frac{2}{13}\}$, familyB has $\{\frac{3}{13}\}$ and the piece that is $\frac{3}{13}$ is divided in step(4).

(4) FamilyA cuts the remaining piece into two pieces: $\frac{2}{13}$ and $\frac{1}{13}$. Then familyB gets to pick.

If familyB thinks that one of the pieces is worth at least $\frac{2}{13}$ of the cake, then familyB will pick that piece and the $\frac{1}{13}$ goes to familyB. The division process stops here because, now, familyA has $\{\frac{5}{13}, \frac{2}{13}, \frac{1}{13}\}$ and familyB has $\{\frac{3}{13}, \frac{2}{13}\}$.

However, if familyB does not think that any of the pieces is at least $\frac{2}{13}$ of the cake, then familyB will take the piece that is at least $\frac{1}{13}$. Now, familyA has $\{\frac{5}{13}, \frac{2}{13}\}$, familyB has $\{\frac{3}{13}, \frac{1}{13}\}$ and the piece that is $\frac{2}{13}$ is divided in step(5).

(5) FamilyB cuts the remaining piece into two pieces: $\frac{1}{13}$ and $\frac{1}{13}$. Then familyA gets to pick.

If familyA thinks that one of the pieces is worth at least $\frac{1}{13}$ of the cake and the remaining piece goes to familyB. Now, familyA has $\{\frac{5}{13}, \frac{2}{13}, \frac{1}{13}\}$ and familyB has $\{\frac{3}{13}, \frac{1}{13}, \frac{1}{13}\}$.
The branches that are to the right are immediate steps to the Ramsey Partitions, and they are not considered as a complete Ramsey Partition. However, the branch that goes straight down on the left is one of the many Ramsey Partitions for the ratio of $k_1 = 8:5 = k_2$. In other words, the set of $\{5,3,2,1,1,1\}$ is a Ramsey Partition, where familyA gets $\{5,2,1\}$ and familyB gets $\{3,1,1\}$.

PROPERTIES OF RAMSEY PARTITIONS

The example above is a Ramsey Partition because it satisfies 2 properties:

1. A partition is Ramsey for the ratio $k_1:k_2$ if and only if the sums do not skip over either k_1 or k_2 when summing terms in the order they appear, leaving out whichever terms you wish.
Applying this property to the set \(\{5,3,2,1,1,1\} \), it is a Ramsey Partition because \(5=5 \) and \(5+3=8 \) so \(k_2=5 \) and \(k_1=8 \) are not skipped.

(2) Let \(k_1 \) and \(k_2 \) be positive integers. A partition of the integer \(k_1+k_2 \) is a Ramsey Partition in the ratio \(k_1:k_2 \) if and only if, for any subset of terms in the partition, there are parts which sums to \(k_2 \) in the complementary subset if there are not parts which sums to \(k_1 \) in that subset.

Using these two properties, my goal is to produce a program that generates a table of all possible Ramsey Partitions for a given \(k_1:k_2 \)

> with(combinat): with(ListTools):

Warning, the protected name Chi has been redefined and unprotected

Warning, the assigned name Group now has a global binding

What is the purpose of this procedure?
The purpose of this procedure is to generate the sum of the elements in the list. Notice that Maple displays the numbers in a list from the smallest to the largest, respectively. Therefore, this procedure adds the numbers from right to left (or from last to first).

> sums := proc(L)

 # defining local variables
 local S, i, j;

 # initializing the set S
 S := {};

 # this for-loop goes from 1 to the number of elements in the list L
 for i from 1 to nops(L)
 do S := S union {add(L[j],j=i..nops(L))}; end do;

 end proc;
Here is a simple test to see if my procedure works. Apparently it does because it returns a list of the total starting at 4=4, 4+3=7, 4+3+2=9,...

> sums([1,1,2,3,4]);

{4, 7, 9, 10, 11}

What is the purpose of this procedure?
The purpose of this procedure is to call "sums" and store the result in a list to test whether or not the k1 and k2 are in my list of sums. If so, then return true.

> test := proc(k1,k2,L)

 # defining local variables
 local S, maxSum, mn, mx;

 # calling sums to add the elements in list L and storing the result in S
 S := sums(L);

 # calling the function max to test the maximum elements in S
 maxSum := max(seq(S[i],i=1..nops(S)));

 # returns the minimum of k1 and k2
 mn := min(k1,k2);

 # returns the maximum of k1 and k2
 mx := max(k1,k2);

 # if this test is true, then this mean that maxSum will not skip k1 or k2
 # because it cannot skip something that it does not reach
 if maxSum < mn then return true;

 # if this test is true, then we want to test if k1 and k2 are in S
 elif maxSum >= mx then return member(k1,S) and member(k2,S);

 # otherwise, we just want to test if the minimum of k1 and k2 are in S
Here is a simple test to see if my procedure works. Apparently it does because it returns true when the numbers k1 and k2 are in the list of sums and false when they are not.

For this case, 4 and 7 are in the list of sums which contains \(\{4,7,9,10,11\}\)
\[
\text{test}(4,7,[1,1,2,3,4])
\]
true

For this case, 5 and 6 are not in the list of sums which contains \(\{4,7,9,10,11\}\)
\[
\text{test}(5,6,[1,1,2,3,4])
\]
false

What does this procedure do?
The purpose of this procedure is to test for property(2) by sub-partitioning the list. This gives the sublists and their complements.
\[
\text{SubPartitions := proc(Part)}
\]

defining local variables
local SS, Subsets, i;

this creates a set from 1 to the number of elements in Part
SS := \{1..nops(Part)\};

returns a set of all the subsets of SS
Subsets := powerset(SS);

maps \(x\) to a list that contains \(x\) and a list that contains everything else
this gives a list that contains a sublist and its complements
map(x->[convert(x,list),convert(SS minus x, list)], Subsets);
subs({seq(i=Part[i],i=1..nops(Part))},%);

end proc:
Here is a simple test to see if my procedure works. Apparently it
does because it returns (the sublist, its complement).

\[\text{SubPartitions([1,1,2,3,4]);} \]

\[[[], [1, 1, 2, 3, 4]], [[1], [1, 2, 3, 4]], [[3], [1, 1, 2, 4]],
[[1, 1, 2, 3, 4], []], [[1, 2, 3, 4], [1]],
[[1, 3, 4], [2]], [[1, 1, 3, 4], [1]], [[2, 3, 4], [1, 1]],
[[1, 1, 2, 3, 4], [1]], [[1, 1, 2, 3], [2]],
[[1, 1, 2, 4], [1, 3]], [[1, 1, 3, 4], [2]],
[[1, 1, 4], [2, 3]], [[1, 2, 3, 4], [1, 1]],
[[1, 1, 3, 4], [2]], [[1, 1, 2, 3], [2]],
[[1, 1, 2, 4], [1, 3]], [[1, 1, 3, 4], [2]],
[[1, 1, 4], [2, 3]]] \)

What does this procedure do?

The purpose of this procedure is to eliminate the partitions that does not satisfy the property(1) of the Ramsey Partition. First, it calculates all of the possible partitions of the given k1 and k2. Then, it calls the test function to see check for property(1).

\[\text{ramsey1 := proc(k1,k2)} \]

\[\# \text{ defining local variables} \]
\[\text{local part, newPart, j;} \]
\[\# \text{ returns all of the partition of k1+k2} \]
\[\text{part := partition(k1+k2);} \]
\[\# \text{ selecting the partitions from part which} \]
\[\text{ satisfy the function test} \]
\[\text{newPart := select(L->test(k1,k2,L),part);} \]
\[\# \text{ returning the reversed version of newPart} \]
\[\text{return Reverse(newPart);} \]

end proc:

Here is a simple test to see if my procedure works.

\[\text{R := ramsey1(3,5);} \]
\[\text{R := \{[1, 1, 2, 2, 3], [1, 1, 1, 2, 3], [1, 1, 1, 1, 1, 3], [1, 1, 1, 1, 1, 2],}
\[[1, 1, 1, 1, 1, 1, 1, 1]\} \]

Choosing the 4th list inside list R, I use the SubPartitions to generate sublists and their complements.
What does this procedure do?
The purpose of this procedure is to check for property(2) by calling test to check every sublist.

> ramsey2 := proc(k1,k2,L)

defining local variables
local subParts, i;

calling SubPartitions on L and setting it to subParts
subParts := SubPartitions(L);

this for-loop goes from 1 to the number of elements in subParts
for i from 1 to nops(subParts)
do
if test returns false, then this means that the sublist does not # satisfies property(2) of the Ramsey Partitions so we return false
if (test(k1,k2,subParts[i][1]) = false)
then return false; end if;
end do;

else we return true
return true;
end proc:

Here is a simple test to see if my procedure works.
> ramsey2(3,5,R[4]);
true

Knowing that the three procedures above works, it is time to put
it all together.

What does this procedure do?
The purpose of this procedure is to display the all of the partitions that satisfy the property(1) and property(2) of the Ramsey Partitions.

```plaintext
> finallyDONE := proc(k1,k2)

  # defining local variables
  local R, L, i;

  # initializing the list L
  L := [];

  # calling the ramsey1 on k1 and k2 to test
  for property(1)
  R := ramsey1(k1,k2);

  # this for-loop goes from 1 to the number of elements in R
  for i from 1 to nops(R)
  do
    # if ramsey2 returns true for k1 and k2,
    # then reverse the elements in R[i] and place in L
    if ramsey2(k1,k2,R[i])
      then L := [op(L), Reverse(R[i])]; end
    if;
  end do;

  # return the list L
  return L;

end proc:

Calling the procedure above for k1=8:5=k2, the following Ramsey Partitions are displayed.
> f := finallyDONE(8,5);

f := [[5, 3, 2, 1, 1, 1, 1], [5, 3, 1, 1, 1, 1, 1], [5, 2, 1, 1, 1, 1, 1, 1],

  [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

  [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

  [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

  [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

  [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
```

Calling the procedure above for k1=8:5=k2, the following Ramsey Partitions are displayed.
However, this is not what I want. So I use a for-loop to create a table that displays the partitions on separate lines and YOILA, this is what I get.

```
> for i from 1 to nops(f)
do printf("%d.   %a\n", i, f[i]) end do;
1.   [5, 3, 2, 1, 1, 1]
2.   [5, 3, 1, 1, 1, 1, 1]
3.   [5, 2, 1, 1, 1, 1, 1, 1]
4.   [5, 1, 1, 1, 1, 1, 1, 1, 1]
5.   [4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
6.   [3, 2, 2, 1, 1, 1, 1, 1, 1]
7.   [3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
8.   [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
9.   [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
10.   [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
11.   [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

One may ask for the reason why we bother to write a program that generates all of the Ramsey Partitions when it is a lot easier to use the partition of [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., (n-times)] to divide the cakes into n-pieces. The answer is that the Ramsey Partitions provide all of the possible ways to divide the cake. So that individuals who are concerned with the least number of cuts that are required to divide the cake can look at the different partitions and compare. Notice that in the example above, the first partition of [5,3,2,1,1,1] only requires 5-cuts whereas the last partition of [1,1,1,1,1,1,1,1,1,1,1,1,1,1] requires 12-cuts.

Now, that we are familiar with some of the algorithms to fairly divide cakes, I want to write a program to calculate the area of the piece.

EXPLORATION SECTION

Assume that the cake is a unit circle that is being divide by a line L. For example, in the diagram below, we want to calculate the area of the shaded region.
To do this we need:
(areaOfShadedRegion) + (areaOfTriangle) = (theta/2Pi) (Pi*R^2),
which implies that
areaOfShadedRedion = (theta/2Pi) (Pi*1) -
(areaOfTriangle), notice that Pi cancels out
areaOfShadedRedion = (theta/2) -

(1st)
We need to find theta, which is (vector1 . vector2) / (||vector1|| . ||vector2||) = cos(theta)
Note that vector1 and vector2 are taken from the coordinates between the line and the circle.

(2nd)
Now, calculate areaOfTriangle = (1/2)*d*R*sin(theta)

(3rd)
After we know theta and the areaOfTriangle, we can substitute the solution back into the equation in red to solve for the areaOfShadedRegion.
What is the purpose of this procedure?

The purpose of this procedure is to find the coordinates of intersection between the lines and the unit circle.

```maple
> findingXY := proc(line)
    # defining local variables
    local myCircle, answer, x1, x2, y1, y2;

    # defining a unit circle
    myCircle := x^2 + y^2 = 1;

    # solving a linear system for values of x and y
    answer := solve({myCircle, line}, {x, y});

    #x1 := answer[1][1];
    #y1 := answer[1][2];
    #x2 := answer[2][1];
    #y2 := answer[2][2];

    end proc:
```

In this example, the procedure returns \{y,x\} , \{y,x\}

```maple
> findingXY(y=x/3-1);
{y = -1, x = 0}, {y = -4/5, x = 3/5}
```

In this example, the procedure returns \{x,y\} , \{y,x\}

```maple
> findingXY(y=2*x/3+1);
{x = -12, y = 5/13}, {x = 0, y = 1/13}
```

Since the position of x and y changes depending on the equation of the line, I could not figure out how to obtain the values of x and y from the procedure in order to calculate for \(d = [(x_1-x_2)^2+(y_1-y_2)^2]^{(1/2)}\). So I do not know how to proceed.

CLOSING THOUGHTS

I started this project with the goal of exploring ways in which I can divide cakes and other desserts into pieces with equal area using only vertical cuts. However, the more I research the topic of cake-cutting, the more my project changes. My findings consist more of experiments rather than the actual programming
so it is difficult to place together a final project with programs. There are so many facts to consider. Thanks to the help provided by Stefan in explaining the algorithm of Ramsey Partitions, I have decided to concentrate my final project on writing a program for this algorithm which will display a table of all the Ramsey Partitions. However, the program for Ramsey Partitions that I have written works for small k1 and k2 and will become inefficient for large k1 and k2.