Midterm 2 Practice

In studying for the exam, I encourage you to:

- Understand how to do all of the homework problems from Homework 3 and Homework 4.
- Understand the problems from the worksheet on cosets.
- Know definitions.
- Do the following problems! Treat this as a practice exam. We will go over the answers to this in class on Wednesday.

1. (a) Let A be a set. Give the definition of a permutation of A.

 (b) Let $A = \mathbb{Z}$. Which of the following are permutations of A?

 i. The function $\sigma: A \rightarrow A$ given by $\sigma(n) = 3n - 2$

 ii. The function $\tau: A \rightarrow A$ given by $\tau(n) = |n|

2. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ be permutations in S_6.

 (a) Write σ and τ in cycle notation.

 (b) Determine if σ and τ are elements of A_6.

 (c) Find $\sigma\tau$ and $|\langle \sigma\tau \rangle|$.

3. (a) Show that the set $H = \{ \sigma \in S_5 \mid \sigma(5) = 5 \}$ is a subgroup of S_5.

 (b) Show that $S_3 \cong H$.

 (c) If H is a subgroup of a group G, give the definition of a left coset of H.

 (d) Show that $H' = \{ \sigma \in S_5 \mid \sigma(5) = 1 \}$ is a left coset of H.

4. (a) State Lagrange’s Theorem.

 (b) If G is a group with p elements and p is a prime number, prove that G is abelian.

 (c) Let $M_n = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}$. In class we showed that (M_n, \cdot) is a group. Prove that, for $n \geq 3$, $|M_n|$ is even.