Homework 3: Due Thursday, February 13

1. Problem 1. Let \(\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \) and \(\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} \)

 (a) Section 8, Problem 1: Compute \(\tau \sigma \).

 (b) Section 8, Problem 2: Compute \(\tau^2 \sigma \).

 (c) Section 8, Problem 4: Compute \(\sigma^{-2} \tau \).

2. Problem 2. For \(\sigma \) and \(\tau \) as in Problem 1, compute the following.

 (a) Section 8, Problem 6: \(|\langle \sigma \rangle| \).

 (b) Section 8, Problem 7: \(|\langle \tau^2 \rangle| \).

 (c) Section 8, Problem 8: \(\sigma^{100} \).

3. Problem 3.

 (a) Section 8, Problem 16: Find the number of elements in the set \(\{ \sigma \in S_4 \mid \sigma(3) = 3 \} \).

 (b) Show that the set from part (a) is a subgroup of \(S_4 \).

4. Problem 4. Section 9, Problem 7. Consider the permutation \(\sigma = (145)(78)(257) \in S_8 \).
 Write \(\sigma \) in cycle notation.

5. Problem 5.

 (a) Section 9, Problem 14: Find the maximum possible order for an element of \(S_5 \).

 (b) Section 9, Problem 15: Find the maximum possible order for an element of \(S_6 \).

6. Problem 6. Section 9, Problem 23(f) (with slight modification): Show that \(S_n \) is not cyclic for any \(n \geq 3 \).

7. Problem 7. Section 9, Problem 23(g) (with slight modification): Is \(A_3 \) an abelian group? Prove yes or no.

8. Problem 8. Section 9, Problem 29: Show that for every subgroup \(H \) of \(S_n \) for \(n \geq 2 \), either all of the permutations in \(H \) are even or exactly half of them are even.

9. Problem 9. Let \(G \) be group. Define the center of \(G \), denoted \(Z(G) \), to be the following subset:
 \[
 Z(G) = \{ x \in G \mid xy = yx \quad \forall y \in G \}.
 \]

 (a) Show that \(Z(G) \) is a subgroup of \(G \).

 (b) What is the center of \(D_3 \)?

 (c) What is the center of \(D_4 \)?

10. Problem 10. Let \(G \) be a finite group. Prove that there exists a positive integer \(N \) such that, for any \(x \in G \), \(x^N = e \).