Section 2: Binary Operations and Groups

Our main object of study in this course will be a group. Here is the definition.

Definition 0.1. A group \((G, \star)\) is a set \(G\) with binary operation \(\star\) such that

- \(\star\) is associative: \((a \star b) \star c = a \star (b \star c)\) for all \(a, b, c \in G\)
- There exists an identity element \(e \in G\) such that \(e \star a = a \star e = a\) for all \(a \in G\).
- There exist inverse elements: for all \(a \in G\), there exists \(a' \in G\) such that \(a \star a' = a' \star a = e\).

This is a lot to unpack at once, so we will just focus on binary operations today.

Definition 0.2. A binary operation on a set \(S\) is a function \(\star: S \times S \to S\) that we denote by \((a, b) \mapsto a \star b\).

Example 0.3. The main examples: addition and multiplication (where \(S = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \ldots\) i.e. \(a \star b = a + b\) or \(a \star b = a \cdot b\) where \(a\) and \(b\) are some type of numbers.

Example 0.4. Let \(\mathbb{R}^\times = \{r \in \mathbb{R} | r \neq 0\}\). Multiplication is a valid binary operation but + is not because \(1 + (-1) = 0\), and \(0 \notin \mathbb{R}^\times\). We use the terminology that \(\mathbb{R}^\times\) is not closed under + because we can add two entries in the set and get a result that is not in the set.

Example 0.5. Let \(H = \{n^2 | n \in \mathbb{Z}\}\): this is not closed under + because \(1 = 1^2\) and \(4 = 2^2\) but \(1 + 4 = 5\) which is not a perfect square. But, this is closed under multiplication because \(n^2 \cdot m^2 = (nm)^2\).

Example 0.6. Let \(F = \{f: \mathbb{R} \to \mathbb{R}\}\) be the set of all functions from \(\mathbb{R} \to \mathbb{R}\). There are many binary operations we could use here: +, −, ·, ◦.

Example 0.7. Let \(\mathbb{Z}_n = \{0, 1, 2, \ldots, n - 1\}\). This is closed under the binary operations +_n and ·_n (where the subscript \(n\) indicates we are working modulo \(n\)).

Example 0.8. Let \(D_3\) be the group of symmetries of the triangle we discussed on Monday. The composition of two symmetries is a binary operation on this set.

Definition 0.9. A binary operation \(\star\) on a set \(S\) is commutative if \(a \star b = b \star a\) for all \(a, b \in S\).

Example 0.10. + and · are commutative operations on \(\mathbb{Z}\). ◦ is not a commutative operation on \(D_3\) or \(F\).

Definition 0.11. A binary operation \(\star\) on a set \(S\) is associative if \((a \star b) \star c = a \star (b \star c)\) for all \(a, b, c \in S\).

Example 0.12. Which of the following are associative or commutative?

1. \((\mathbb{Z}, -)\): neither! It is not associative because we do not always have \(a - (b - c) = (a - b) - c\); for example, \(1 - (0 - 1) \neq (1 - 0) - 1\). It is not commutative because we do not always have \(a - b = b - a\); for example, \(1 - 2 \neq 2 - 1\).
2. \((F, \circ)\): This is associative but not commutative. Reason: composition is always associative.

Proof: we need to show that, given three functions \(f, g, h\), \(f \circ (g \circ h) = (f \circ g) \circ h\). We know this is true because

\[f \circ (g \circ h)(x) = f \circ (g(h(x))) = f(g(h(x))) \]

and

\[(f \circ g) \circ (h)(x) = (f \circ g)(h(x)) = f(g(h(x))) \].

This is not commutative because \(f \circ g\) is generally not equal to \(g \circ f\).

3. \((D_3, \circ)\): It is associative but not commutative. It is associative because composition is always associative, but it is not commutative because on Monday we saw that \(F \circ R \neq R \circ F\).

Definition 0.13. Given a binary operation \(\star\) and a finite set \(S\), we can make a table representing that operation exactly as we did for the triangle. The \(i^\text{th}\) entry of the table is \(i^\text{th}\) entry to the left \(\star j^\text{th}\) entry above.

Example 0.14. If \(S = \{a, b, c\}\), here’s one binary operation.

\[
\begin{array}{ccc}
\star & a & b & c \\
\hline
a & b & c & b \\
b & a & c & b \\
c & c & a & a \\
\end{array}
\]

Is this associative or commutative?

Answer: neither! We will come back to this next time.