SECTION 16: GROUP ACTIONS

Definition 0.1. Let X be a set and let G be a group. An **action of G on X** is a function $\star : G \times X \to X$ such that

- $e \star x = x$ for all $x \in X$, and
- $(g_1 g_2) \star x = g_1 \star (g_2 \star x)$ for all $g_1, g_2 \in G$ and $x \in X$.

We also say G **acts on X**.

In words, a group action moves an element $x \in X$ to a new element $g \star x \in X$. Let's see some examples.

Example 0.2. Let $X = \{1, 2, 3, 4\}$ and let $G = S_4$. Then, G acts on X by $\sigma \star x = \sigma(x)$.

For example, if $\sigma = (123) \in S_4$, $\sigma \star 1 = \sigma(1) = 2$, and $\sigma \star 3 = \sigma(3) = 1$.

Example 0.3. Let $X = \{v_1, v_2, v_3, v_4\}$ be the four vertices of a square:

\[
\begin{array}{ccc}
& v_2 & \\
v_1 & & v_3 \\
v_4 & & \\
& v_1 \\
\end{array}
\]

Then, D_4 acts on X by $g \star v_i = v_j$ where v_i gets moved to v_j by g. If $r =$ rotation 90 degrees clockwise and $f =$ flip across the vertical axis, then $r \star v_1 = v_2$, $r \star v_2 = v_3$, $f \star v_1 = v_2$, $f r \star v_1 = v_1$; etc.

Example 0.4. Let $X = \mathbb{Z} \times \mathbb{Z}$. Then, $G = \mathbb{Z}$ acts on X in many ways! One example: by $a \star (n, m) = (n + a, m)$.

Example 0.5. Let $X = \mathbb{R}^n$. Then, $G = \text{GL}(n, \mathbb{R})$ acts on \mathbb{R}^n by $A \star v = Av$. (This is linear algebra!) For example, if $n = 2$, and $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then $A \star \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$.

Definition 0.6. If G acts on X and $g \in G$ is a fixed element, the **fixed points of g** is the set $X_g = \{x \in X \mid g \star x = x\}$.

Example 0.7. In the previous example, if $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then $X_A = \{x \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix} \}$, so $X_A = \{ \begin{bmatrix} x \\ y \end{bmatrix} \} = \text{span} \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$.

Example 0.8. In the square example, what is X_{fr}? These are the elements such that $fr \star v_i = v_i$. We can just check directly: $fr \star v_1 = v_1$; $fr \star v_2 = v_4$; $fr \star v_3 = v_3$; and $fr \star v_4 = v_2$, so $X_{fr} = \{v_1, v_3\}$.
Definition 0.9. If \(G \) acts on \(X \) and \(x \in X \) is a fixed element, then the **stabilizer of** \(x \) is the set \(G_x = \{ g \in G \mid g \ast x = x \} \).

Definition 0.10. If \(G \) acts on \(X \) and \(x \in X \) is a fixed element, then the **orbit of** \(x \) is the set \(G \cdot x = \{ y \in X \mid y = g \ast x \text{ for some } g \in G \} \).

The **stabilizer** is a subset of \(G \). The **orbit** is a subset of \(X \).

Example 0.11. In the square example, what is \(G_{v_1} \)? What is \(G \cdot v_1 \)?

The stabilizer is the set of elements such that \(g \ast v_1 = v_1 \). So, \(G_{v_1} = \{ e, fr \} \). The orbit is the set of possible elements that \(v_1 \) can move to, so \(G \cdot v_1 = \{ v_1, v_2, v_3, v_4 \} = X \).

Example 0.12. Let’s go back to \(X = \mathbb{Z} \times \mathbb{Z}, G = \mathbb{Z} \), and \(G \) acts on \(X \) by \(a \ast (n, m) = (n+a, m) \). What is \(G_{(1,1)} \)? What is \(G \cdot (1,1) \)?

\(G_{(1,1)} = \{ a \in \mathbb{Z} \mid a \ast (1,1) = (1,1) \} \). Because \(a \ast (1,1) = (1+a, 1) \), this is only \(a = 0 \), so \(G_{(1,1)} = \{ 0 \} \).

\(G \cdot (1,1) = \{ (n,m) \mid (n,m) = a \ast (1,1) \text{ for some } a \in \mathbb{Z} \} \). Because \(a \ast (1,1) = (1+a, 1) \), and \(a \) can be any integer, \(G \cdot (1,1) = \{ (n,m) \mid m = 1 \} \).

Proposition 0.13. For any \(x \), the stabilizer \(G_x \) is a subgroup of \(G \).

Proof. Homework! \(\square \)

Theorem 0.14 (Orbit-Stabilizer Theorem). If \(G \) is finite, for any \(x \in X \), \(|G \cdot x| |G_x| = |G| \).

Proof. By Lagrange’s Theorem, because \(|G_x| \) is a subgroup, we know \(|G| = |G_x| (G : G_x) \), where \((G : G_x) \) is the number of cosets of \(G_x \) in \(G \). So, we just need to show that \(|G \cdot x| \) is the number of cosets of \(G_x \). The size of \(G/G_x \).

To do this, we will define a bijection \(\phi : G \cdot x \rightarrow G/G_x \). Any element of \(G \cdot x \) is of the form \(g \ast x \) for some \(g \), so let \(\phi(g \ast x) = gG_x \). To see that this is well-defined and one-to-one, we need to show \(g_1 \ast x = g_2 \ast x \) if and only if \(g_1G = g_2G \). But, \(g_1 \ast x = g_2 \ast x \) if and only if \(g_1^{-1}g_2 \ast x = x \), if and only if \(g_1^{-1}g_2 \in G_x \). This occurs if and only if \(g_2 \in g_1G_x \), which happens if and only if \(g_2G_x = g_1G_x \). Therefore, \(\phi \) is well defined and one-to-one. It is also onto by definition. Hence, it is a bijection, so \(|G \cdot x| = (G : G_x) \). \(\square \)