(1) Chapter 2, exercise 2.4.
(2) Chapter 2, exercise 2.6.
(3) Let G be a group.
 (a) Prove that the intersection of any two subgroups of G is again a subgroup.
 (b) Using the example $G = \mathbb{Z}^+$, show that the union of two subgroups of G is not always a subgroup.
(4) Let G be a group. Let H be a nonempty subset of G with the property that for any $a, b \in H$, we also have $a^{-1}b \in H$. Prove that H is a subgroup.
(5) Chapter 2, exercise 3.1.
(6) Chapter 2, exercise 4.1.
(7) Chapter 2, exercise 4.2.