(1) Artin, chapter 16, exercise 3.2.
(2) Artin, chapter 16, exercise 4.1.
(3) Artin, chapter 16, exercise 6.1.
(4) Artin, chapter 16, exercise 6.2.
(5) Let p be a prime, and let k be a field of characteristic p.
 (a) Let F be the field $k(t)$ (the fraction field of $k[t]$). Prove that the polynomial $x^p - t \in F[x]$ is irreducible. (Hint: since $k[t]$ is a Euclidean domain, Gauss’s lemma and the Eisenstein criterion remain valid using t as the “prime”.)
 (b) Let K be the field $k(x^{1/p}, y^{1/p})$. Prove that $[K : F] = p^2$. (Hint: apply (a) twice.)
 (c) Prove that for any $\alpha \in K$, we have $\alpha^p \in F$. Deduce that there is no primitive element for K over F.
(6) Let $P(x) \in \mathbb{C}[x]$ be a polynomial whose coefficients are algebraic over \mathbb{Q}. Prove that the roots of P in \mathbb{C} are also algebraic over \mathbb{Q}. (Hint: note that the coefficients all belong to some finite extension of \mathbb{Q}, over which we can construct a splitting field.)
(7) Let K be the splitting field of $x^4 - 2$ over \mathbb{Q}. Prove that K is Galois and $G(K/\mathbb{Q}) \cong D_4$ (the dihedral group of order 8).
(8) Using cyclotomic fields, construct Galois field extensions K/\mathbb{Q} for which:
 (a) $G(K/\mathbb{Q}) \cong C_7$;
 (b) $G(K/\mathbb{Q}) \cong C_4 \times C_8$;
 (c) $G(K/\mathbb{Q}) \cong C_3 \times C_3 \times C_3$.
(9) Put $K = \mathbb{Q}(\zeta_3, 2^{1/3}, \sqrt{5})$. Prove that K/\mathbb{Q} is Galois and $G(K/\mathbb{Q}) \cong S_3 \times C_2$.