Problem 1. [10 points.]

Give a one-sentence answer to each of the following.

(a) For $\rho : G \to \text{GL}(V)$ an irreducible representation, give the name and statement of the result describing the G-invariant transformations $T : V \to V$.

(b) For $F \to K$ a field extension, explain why the minimal polynomial of an element $\alpha \in K$ over F is irreducible.
(c) For $P(x) \in \mathbb{Z}[x]$ for which every root of $P(x)$ in \mathbb{C} has absolute value 1, describe all possible irreducible factors of $P(x)$ over \mathbb{Q}.

Problem 2. [5 points.]

For n an odd integer, state (with justification) the relationship between the cyclotomic polynomials $\Phi_n(x)$ and $\Phi_{2n}(x)$.

Problem 3. [10 points.]

Compute the degrees of the following field extensions. No further justification is needed.

(a) $\mathbb{Q} \to \mathbb{Q}(2^{1/5})$.

(b) $\mathbb{Q} \to \mathbb{Q}(\zeta_{18})$.

(c) $\mathbb{Q}(\sqrt{6}) \to \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Problem 4. [10 points.]

For each of the following, state whether or not the following ruler-and-compass construction is possible or impossible. If possible, do nothing else; if impossible, justify your answer.

(a) Given distinct points p_0, p_1, p_2, construct a point p_3 such that the measure of $\angle p_0 p_1 p_3$ is one-fourth that of $\angle p_0 p_1 p_2$.

(b) Given the endpoints p_0, p_1 of a line segment of length 1, construct a segment of length $2^{1/3}$.

(c) Given points p_0, p_1, construct a regular 13-gon with one side equal to $p_0 p_1$.

(d) Given points p_0, p_1, p_2 such that the segment $p_0 p_1$ has length 1 and the segment $p_1 p_2$ has length $\cos \frac{2\pi}{7}$, construct a segment of length $\cos \frac{\pi}{7}$.