Computing Equations of Curves with Many Points

Virgile Ducet1
Claus Fieker2

1Institut de Mathématiques de Luminy
2Fachbereich Mathematik Universität Kaiserslautern

Algorithmic Number Theory Symposium, July 2012
Motivation

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.
Motivation

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

Question: How big can $N(C)$ be?
Motivation

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

Question: How big can $N(C)$ be?

Introduce $N_q(g) = \max_{C/\mathbb{F}_q} N(C)$.

$g(C) = g$
Motivation

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

Question: How big can $N(C)$ be?

Introduce $N_q(g) = \max_{C/\mathbb{F}_q} N(C)_{g(C)=g}$.

Upper bounds:
- Hasse-Weil-Serre bound:
 \[|N_q(g) - q - 1| \leq g \cdot \lfloor 2\sqrt{q} \rfloor; \]
- Oesterlé bound;
- articles of Howe and Lauter ('03, '12),...
Lower bounds: Find curves with as many points as possible.
Lower bounds: Find curves with as many points as possible.

Possible methods:

▶ curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves, ...

▶ curves defined by explicit coverings: Artin-Schreier-Witt, Kummer, ...

▶ curves with modular structure: elliptic or Drinfel’d modular curves, ...

▶ curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel’d modules), ...
Lower bounds: Find curves with as many points as possible.

Possible methods:

- curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves,
- curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,
- curves with modular structure: elliptic or Drinfel’d modular curves,
- curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel’d modules),

Our approach: Class Field Theory.

Therefore we switch between the language of function fields and curves. For instance, if $K = \mathbb{F}_q(C)$, we set $N(K) \overset{\text{def}}{=} \# \text{Pl}(K, 1) = N(C)$.
Why use Class Field Theory?

Remark:
Let L/K be an algebraic extension of algebraic function fields defined over \mathbb{F}_q. Then

$$N(L) \geq [L : K]\#\text{Split}_{\mathbb{F}_q}(L/K) + \#\text{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.
Why use Class Field Theory?

Remark:
Let L/K be an algebraic extension of algebraic function fields defined over \mathbb{F}_q. Then

$$N(L) \geq [L : K] \#\text{Split}_{\mathbb{F}_q}(L/K) + \#\text{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

Problem: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).
Why use Class Field Theory?

Remark:
Let L/K be an algebraic extension of algebraic function fields defined over \mathbb{F}_q. Then

$$N(L) \geq [L : K] \#\text{Split}_{\mathbb{F}_q}(L/K) + \#\text{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

Problem: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).

This Talk: we explain how to find these equations and describe an algorithm to find good curves (look at www.manypoints.org).
The Artin Map

Let L/K be an abelian extension. Let P be a place of K and Q be a place of L over P. Let F_P (resp. F_Q) be the residue field of K at P (resp. of L at Q).

When P is unramified the reduction map $\text{Gal}_P(L/K) \rightarrow \text{Gal}(F_Q/F_P)$ is an isomorphism. The pre-image of Frobenius is independent of Q; one denotes it by $(P, L/K)$ and call it the *Frobenius automorphism at P.*

Definition:

The map $P \mapsto (P, L/K) \in \text{Gal}(L/K)$ can be extended linearly to the set of divisors supported outside the ramified places of L/K. The resulting map is called the *Artin map* and is denoted $(\cdot, L/K)$.
Class Field Theory

Definition:
A *modulus* on K is an effective divisor.

Let m be a modulus supported on a set $S \subset \text{Pl}_K$, we denote by Div_m the group of divisors which support is disjoint from S. Set

$$P_{m,1} = \{ \text{div}(f) : f \in K^\times \text{ and } \nu_P(f-1) \geq \nu_P(m) \text{ for all } P \in S \}.$$

Definition:
A *congruence subgroup modulo* m is a subgroup $H < \text{Div}_m$ of finite index such that $P_{m,1} \subseteq H$.

Existence Theorem:
For every modulus m and every congruence subgroup H modulo m, there exists a unique abelian extension L_H of K, called the *class field of* H, such that the Artin map provides an isomorphism

$$\text{Div}_m/H \cong \text{Gal}(L_H/K).$$
Artin Reciprocity Law:
For every abelian extension L/K, there exists an *admissible modulus* \mathfrak{m} and a *unique congruence subgroup* $H_{L,\mathfrak{m}}$ modulo \mathfrak{m}, such that the Artin map provides an isomorphism

$$\text{Div}_\mathfrak{m}/H_{L,\mathfrak{m}} \cong \text{Gal}(L/K).$$

Definition:
The *conductor* of L/K, denoted $f_{L/K}$, is the smallest admissible modulus. It is supported on exactly the ramified places of L/K.

Main Theorem of Class Field Theory:
Let \mathfrak{m} be a modulus. There is a 1-1 inclusion reversing correspondence between congruence subgroups H modulo \mathfrak{m} and finite abelian extensions L of K of conductor smaller than \mathfrak{m}. Furthermore the Artin map provides an isomorphism

$$\text{Div}_\mathfrak{m}/H \cong \text{Gal}(L/K).$$
Computing Abelian Extensions

Data: Let m be a modulus over K and H be a congruence subgroup modulo m.
Computing Abelian Extensions

Data: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m}.

Goal: Compute the class field L of H.
Computing Abelian Extensions

Data: Let m be a modulus over K and H be a congruence subgroup modulo m.

Goal: Compute the class field L of H.

Assumption: $\text{Div}_m/H \cong \mathbb{Z}/\ell^m\mathbb{Z}$ for a prime number ℓ and an integer $m \geq 1$. Two cases: $\ell = p \overset{\text{def}}{=} \text{char}(K)$ or $\ell \neq p$.

Strategy: Find an abelian extension M of K containing L for which we can compute explicitly the Artin map. Then compute L as the subfield of M fixed by the image of H.

V. Ducet and C. Fieker (IML, FMUK)
Computing Equations of Curves
ANTS X 8 / 16
Computing Abelian Extensions

Data: Let m be a modulus over K and H be a congruence subgroup modulo m.

Goal: Compute the class field L of H.

Assumption: $\text{Div}_m/H \cong \mathbb{Z}/\ell^m\mathbb{Z}$ for a prime number ℓ and an integer $m \geq 1$. Two cases: $\ell = p \overset{\text{def}}{=} \text{char}(K)$ or $\ell \neq p$.

Strategy: Find an abelian extension M of K containing L for which we can compute explicitly the Artin map. Then compute L as the subfield of M fixed by the image of H.
Remark:
Let $P \in \text{Pl}_K$. Then $(P, M/K)|_L = (P, L/K)$.

So
\[
(H, M/K) = \{(P, M/K) : P \in H\}
= \{\sigma \in \text{Gal}(M/K) : \sigma|_L = \text{Id}_L\}
= \text{Gal}(M/L).
\]

Galois Theory implies $L = M^{(H, M/K)}$.
Set $n = l^m$. The two cases are related to the following equations:

\[
\begin{cases}
 y^n = \alpha & \text{if } \ell \neq p \text{ (Kummer theory)} \\
 \varphi(\vec{y}) = \vec{\alpha} & \text{if } l = p \text{ (Artin-Schreier-Witt theory)}.
\end{cases}
\]
Set \(n = l^m \). The two cases are related to the following equations:

\[
\begin{aligned}
 \begin{cases}
 y^n = \alpha & \text{if } l \neq p \text{ (Kummer theory)} \\
 \varphi(\vec{y}) = \vec{\alpha} & \text{if } l = p \text{ (Artin-Schreier-Witt theory)}.
 \end{cases}
\end{aligned}
\]

Case \(l \neq p \):
Set \(K' = K(\zeta_n) \) and \(L' = L(\zeta_n) \). By Kummer theory one can compute a set \(S \) of places of \(K' \) such that \(L' = K'(\sqrt[n]{\alpha}) \) for a \(S \)-unit \(\alpha \). Adding the \(n \)th roots of every \(S \)-unit to \(K' \), we obtain an abelian extension \(M = K'(\sqrt[n]{U_S}) \) for which we have an explicit Artin map. Using the data of the congruence subgroup \(H \), one can compute \(L' \).
Set $n = l^m$. The two cases are related to the following equations:

\[
\begin{cases}
 y^n = \alpha & \text{if } \ell \neq p \text{ (Kummer theory)} \\
 \varphi(\vec{y}) = \vec{\alpha} & \text{if } l = p \text{ (Artin-Schreier-Witt theory)}.
\end{cases}
\]

Case $\ell \neq p$:
Set $K' = K(\zeta_n)$ and $L' = L(\zeta_n)$. By Kummer theory one can compute a set S of places of K' such that $L' = K'(\sqrt[n]{\alpha})$ for a S-unit α. Adding the nth roots of every S-unit to K', we obtain an abelian extension $M = K'(\sqrt[n]{U_S})$ for which we have an explicit Artin map. Using the data of the congruence subgroup H, one can compute L'.

The extension L'/K is abelian and one can compute its Artin map. Then we apply the same recipe to the tower $L'/L/K$.
Case $\ell = p$

Problem: Kummer theory does not apply.

Definition: The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x} = (x_1, \ldots, x_m)$ with $x_i \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $W_m(K)$. It comes equipped with the Artin-Schreier-Witt operator $\wp: W_m(K) \to W_m(K)$ defined by $\wp(\vec{x}) = (x_1^p, \ldots, x_m^p) - (x_1, \ldots, x_m)$.

Remark: Let $\vec{x} \in W_m(K)$. The equation $\wp(\vec{y}) = \vec{x}$ defines an extension $K(\wp^{-1}(\vec{x})) = K(y_1, \ldots, y_m)$.
Case $\ell = p$

Problem: Kummer theory does not apply.

Instead: Use Artin-Schreier-Witt theory.
Case $\ell = p$

Problem: Kummer theory does not apply.

Instead: Use Artin-Schreier-Witt theory.

Definition:
The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x} = (x_1, \ldots, x_m)$ with $x_i \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $W_m(K)$.
Case $\ell = p$

Problem: Kummer theory does not apply.

Instead: Use Artin-Schreier-Witt theory.

Definition:
The *Witt vectors of length m with coefficients in K* is the set of m-tuples $\vec{x} = (x_1, \ldots, x_m)$ with $x_i \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $W_m(K)$.

It comes equipped with the Artin-Schreier-Witt operator $\wp : W_m(K) \rightarrow W_m(K)$ defined by

$$\wp(\vec{x}) = (x_1^p, \ldots, x_m^p) - (x_1, \ldots, x_m).$$
Case $\ell = p$

Problem: Kummer theory does not apply.

Instead: Use Artin-Schreier-Witt theory.

Definition:

The *Witt vectors of length m with coefficients in K* is the set of m-tuples $\vec{x} = (x_1, \ldots, x_m)$ with $x_i \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $W_m(K)$.

It comes equipped with the *Artin-Schreier-Witt operator*

$\wp : W_m(K) \to W_m(K)$ defined by

$$\wp(\vec{x}) = (x_1^p, \ldots, x_m^p) - (x_1, \ldots, x_m).$$

Remark:

Let $\vec{x} \in W_m(K)$. The equation $\wp(\vec{y}) = \vec{x}$ defines an extension

$$K(\wp^{-1}(\vec{x})) \overset{def}{=} K(y_1, \ldots, y_m).$$
Main Theorem of ASW theory: There exists an element $\vec{\beta} \in W_m(K)$ such that $L = K(\phi^{-1}(\vec{\beta}))$.
Main Theorem of ASW theory: There exists an element $\vec{\beta} \in W_m(K)$ such that $L = K(\varphi^{-1}(\vec{\beta}))$.

Notation:

Let φ_i be such that

$$\varphi(\vec{x}) = (\varphi_1(x_1), \ldots, \varphi_i(x_1, \ldots, x_i), \ldots, \varphi_m(x_1, \ldots, x_m)).$$

Set $K_0 = K$ and $K_i = K_{i-1}(\varphi_i^{-1}(\beta_i))$ for $i = 1, \ldots, m$.
Main Theorem of ASW theory: There exists an element $\vec{\beta} \in W_m(K)$ such that $L = K(\varphi^{-1}(\vec{\beta}))$.

Notation:

Let φ_i be such that

$$\varphi(x) = (\varphi_1(x_1), \ldots, \varphi_i(x_1, \ldots, x_i), \ldots, \varphi_m(x_1, \ldots, x_m)).$$

Set $K_0 = K$ and $K_i = K_{i-1}(\varphi_i^{-1}(\beta_i))$ for $i = 1, \ldots, m$.

Strategy to compute $L = K_m$: Compute β_i and K_i recursively.
Main Theorem of ASW theory: There exists an element $\vec{\beta} \in W_m(K)$ such that $L = K(\phi^{-1}(\vec{\beta}))$.

Notation:
Let ϕ_i be such that

$$\phi(\vec{x}) = (\phi_1(x_1), \ldots, \phi_i(x_1, \ldots, x_i), \ldots, \phi_m(x_1, \ldots, x_m)).$$

Set $K_0 = K$ and $K_i = K_{i-1}(\phi_i^{-1}(\beta_i))$ for $i = 1, \ldots, m$.

Strategy to compute $L = K_m$: Compute β_i and K_i recursively.

By the Strong Approximation Theorem and the work of H.L. Schmid (1936) one can find a divisor D_i such that $\beta_i \in L(D_i)$.

Set $M_i = K(x_1, \ldots, x_{i-1}, \phi^{-1}(L(D_i)))$. Then it also provides an explicit Artin map for the extension M_i/K_{i-1}, from which one can compute β_i and thus K_i.
Cyclic Extensions of Prime Degree

Proposition:
Let L/K be a cyclic extension of prime degree ℓ and of conductor $f_{L/K}$. Assume that they are defined over \mathbb{F}_q. Then the genus of L verifies:

$$g_L = 1 + \ell(g_K - 1) + \frac{1}{2}(\ell - 1)\deg(f_{L/K}).$$
Cyclic Extensions of Prime Degree

Proposition:
Let L/K be a cyclic extension of prime degree ℓ and of conductor $f_{L/K}$. Assume that they are defined over \mathbb{F}_q. Then the genus of L verifies:

$$g_L = 1 + \ell (g_K - 1) + \frac{1}{2}(\ell - 1) \deg(f_{L/K}).$$

Remark:
There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:
Cyclic Extensions of Prime Degree

Proposition:
Let L/K be a cyclic extension of prime degree ℓ and of conductor $f_{L/K}$. Assume that they are defined over \mathbb{F}_q. Then the genus of L verifies:

$$g_L = 1 + \ell(g_K - 1) + \frac{1}{2}(\ell - 1) \deg(f_{L/K}).$$

Remark:
There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:

Proposition:
A place P of K is wildly ramified in L if and only if $f_{L/K} \geq 2P$ (and thus tamely ramified if and only if $v_P(f_{L/K}) = 1$).
The Algorithm

Input: A function field K/\mathbb{F}_q, a prime ℓ, an integer G.

Output: The equations of all cyclic extensions L of K of degree ℓ such that $g(L) \leq G$ and $N(L)$ improves the best known record.

1. Compute all the moduli of degree less than $B = \frac{(2G - 2 - \ell(2g(K) - 2))}{(\ell - 1)}$.
2. **FOR** each such modulus m **DO**
3. Compute the ray class group $\text{Pic}_m \cong \text{Div}_m / P_{m,1}$.
4. Compute the set T of subgroups of Pic_m of index ℓ.
5. **FOR** every H in T **DO**
6. Compute $g(L)$ and $n = N(L)$, where L is the class field of H.
7. **IF** n is greater than the best known record **THEN**
8. Update n as the new lower bound on $N_q(g(L))$.
9. Compute the equation of L.
10. **END IF**
11. **END FOR**
12. **END FOR**
New Results over \mathbb{F}_2

| g | $N = |S| + |T| + |R|$ | OB | g_0 | f | G |
|-----|-----------------|------|-------|-----|-----|
| 14 | $16 = 16 + 0 + 0$ | 16 | 4 | $2P_7$ | $\mathbb{Z}/2\mathbb{Z}$ |
| 17 | $18 = 16 + 2 + 0$ | 18 | 2 | $4P_1 + 6P_1$ | $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ |
| 24 | $23 = 20 + 1 + 2$ | 23 | 4' | $2P_1 + 4P_1 + 2P_2$ | $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ |
| 29 | $26 = 24 + 2 + 0$ | 27 | 4 | $4P_1 + 8P_1$ | $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ |
| 41 | $34 = 32 + 2 + 0$ | 35 | 3' | $4P_1 + 4P_1$ | $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ |
| 45 | $34 = 32 + 2 + 0$ | 37 | 2 | $4P_1 + 8P_1$ | $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ |
| 46 | $35 = 32 + 1 + 2$ | 38 | 3 | $3P_1 + 8P_1$ | $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ |

g: genus of the covering.
N: number of F_2-rational points. OB: Oesterlé bound.
g_0: genus of the base curve. f: conductor of the extension.
G: Galois group. S: totally split places.
T: totally ramified places. R: (non-totally) ramified places.
Example:

Take the genus 2 maximal curve C_0 with equation
\[y^2 + (x^3 + x + 1)y + x^5 + x^4 + x^3 + x. \]

Then the new curve of genus 17 with 18 rational points is a fiber product of Artin-Schreier coverings of C_0 with equations
\[
\begin{cases}
 z^2 + z + (x^4 + x^2 + x + 1)/x^3y + (x^6 + x^5 + x + 1)/x^2; \\
 w^2 + w + (x^3 + 1)/xy + x + 1.
\end{cases}
\]
1998 World Cup’s 14th Anniversary!!!!!!!!!!!!!!

France 3 = N \left(\mathbb{P}^1_{\mathbb{F}_2} \right) \quad Brazil \ g \left(\mathbb{P}^1_{\mathbb{F}_2} \right) = 0