Notes on algebraic numbers and algebraic integers

An *algebraic number* is an element $\alpha \in \mathbb{C}$ for which there exists a nonzero polynomial $P(x) \in \mathbb{Q}[x]$ such that $P(\alpha) = 0$.

A *number field* is a subfield of \mathbb{C} which is finite-dimensional as a \mathbb{Q}-vector space.1

- Any finite set of algebraic numbers is contained in some number field.
- Conversely, an element $\alpha \in \mathbb{C}$ is an algebraic number if and only if $1, \alpha, \alpha^2, \ldots$ all belong to some finite-dimensional \mathbb{Q}-vector subspace of \mathbb{C}. (Hint: any linear dependence relation gives rise to a polynomial with α as a root.)
- The set \mathbb{Q} of algebraic integers is a subfield of \mathbb{C}. That is, \mathbb{Q} is closed under addition, subtraction, multiplication, and division. (This follows from the previous statements.)
- For any algebraic number α, there is a unique monic (leading coefficient 1) polynomial $P(x) \in \mathbb{Q}[x]$ of minimal degree such that $P(\alpha) = 0$. It is called the *minimal polynomial* of α. (Hint: the set of polynomials which vanish on α is a nonzero ideal of $\mathbb{Q}[x]$. Use Euclidean division to show that this ideal is principal.)
- If $\alpha \in \mathbb{C}$ is a root of a nonzero polynomial $P(x) \in \mathbb{Q}[x]$, then $\alpha \in \mathbb{Q}$. (Hint: first put all of the coefficients of P into a number field.)
- The set \mathbb{Q} is countable; that is, it can be put into bijection with \mathbb{Z}, but not with \mathbb{R} or \mathbb{C}.

An *algebraic integer* is an element $\alpha \in \mathbb{C}$ for which there exists a monic polynomial $P(x) \in \mathbb{Z}[x]$ such that $P(\alpha) = 0$.

- Any $\alpha \in \mathbb{Q}$ is an algebraic number. It is an algebraic integer if and only if it is in \mathbb{Z}. (Hint: use the rational root theorem. This is a special case of Gauss’s lemma; see below.) We will sometimes use the term2 *rational integer* to refer to elements of \mathbb{Z}.
- For any algebraic number α, α is an algebraic integer if and only if its minimal polynomial belongs to $\mathbb{Z}[x]$. (Hint: use Gauss’s lemma on the content of polynomials.)
- For any algebraic number α, α is an algebraic integer if and only if $1, \alpha, \alpha^2, \ldots$ all belong to a finitely generated \mathbb{Z}-submodule of \mathbb{C}. (Hint: if there is such a submodule, then the submodules generated by $1, \alpha, \ldots, \alpha^n$ for successive values of n must eventually stabilize.)

1More accurately, a number field is an *abstract* field of characteristic 0 which is finite-dimensional as a \mathbb{Q}-vector space. What I just defined should really be called an *embedded* number field; we’ll come back to this in a few lectures.

2This linguistic construction is an example of a *retronym*.

1
• The set \mathbb{Z} of algebraic integers is a subring of \mathbb{C}. That is, \mathbb{Z} is closed under addition, subtraction, and multiplication, but not division.

• If $\alpha \in \mathbb{C}$ is a root of a nonzero monic polynomial $P(x) \in \mathbb{Z}[x]$, then $\alpha \in \mathbb{Z}$.