(1) Let K be a number field. Using the Chebotarev density theorem, prove that the Frobenius elements corresponding to maximal ideals of \mathfrak{o}_K are dense in the absolute Galois group G_K. (This is just an exercise in unwinding the definitions.)

(2) In this exercise, we prove the theorem of Borel stated in class on November 3.

(a) Let $f(T) = \sum_{n=0}^{\infty} a_n T^n$ be a power series over an arbitrary field K. Prove that $f(T)$ represents a rational function over K if and only if for some positive integer m, the determinants of the $(m+1) \times (m+1)$ matrices $A_{n,m} = (a_{n+i+j})_{i,j=0}^m$ vanish for all sufficiently large n.

(b) Let $f(T) = \sum_{n=0}^{\infty} a_n T^n$ be a power series over \mathbb{Z}. Let $r > 0$ be a real number such that over \mathbb{Q}_p, there exists a polynomial $P(T)$ of degree $d < m$ such that $P(T) f(T)$ converges for $|T| < r + \epsilon$ for some $\epsilon > 0$. (We do not assume that P has coefficients in \mathbb{Z}.) Prove that for some $C > 0$, $|\det(A_{n,m})|_p \leq C r^{-(m-d)}$ for all n.

(c) Let $f(T) = \sum_{n=0}^{\infty} a_n T^n$ be a power series over \mathbb{Z}. Let R and r be real numbers with $Rr > 1$ such that over \mathbb{C}, $f(T)$ converges for $|T| < R$; and over \mathbb{Q}_p, $f(T)$ is the ratio of two series that converge for $|T| < r$. Prove that f represents a rational function. (Hint: apply (b) with r replaced by $r - \epsilon$ for which $(R - \epsilon)(r - \epsilon) > 1$, then combine with a trivial bound on $|\det(A_{n,m})|_{\infty}$.)

(3) Let π be an element of an algebraic closure of \mathbb{Q}_p satisfying $\pi^{p-1} = -p$. (You may use without proof the fact that $\mathbb{Z}_p[\pi]$ is a discrete valuation ring with maximal ideal (π).) Define the power series

$$E_\pi(T) = \exp(\pi(T - T^p)) \in \mathbb{Q}_p(\pi)[[T]].$$

(a) Prove that $E_\pi(T) \in 1 + \pi \mathbb{Z}_p[\pi] [[T]]$.

(b) Prove that $E_\pi(T)$ has radius of convergence strictly greater than 1. In particular, it makes sense to evaluate it at any element of $\mathbb{Z}_p[\pi]$.

(c) Prove that if $t \in \mathbb{Z}_p$ satisfies $t^p = t$, then $E_\pi(t)^p = 1$. (Hint: check that in the identity

$$E_\pi(T)^p = \exp(\pi p T) \exp(-\pi p T^p)$$

it is valid to substitute t separately into the two factors on the right.)

(4) With notation as in the previous problem, let n be a positive integer and define

$$E_n(T) := \exp(\pi(T - T^{p^n})) = E_\pi(T) E_\pi(T^p) \cdots E_\pi(T^{p^{n-1}}) \in \mathbb{Q}_p(\pi)[[T]].$$

Show that the formula $t \mapsto E_n([t])$ defines a nontrivial additive character on \mathbb{F}_{p^n}, where $[t]$ denotes the unique element of \mathbb{Z}_{p^n} (the finite étale extension of \mathbb{Z}_p with residue field \mathbb{F}_{p^n}) lifting t and satisfying $t^{p^n} = t$.

(5) Set $q = p^n$ and let

$$f = \sum_{I = (i_1, \ldots, i_d)} a_I x_1^{i_1} \cdots x_d^{i_d} \in \mathbb{F}_q[x_1, \ldots, x_d]$$
be a polynomial. Prove that for any positive integer m, the number of points $(x_1, \ldots, x_d) \in (\mathbb{F}_{q^m}^\times)^d$ for which $f(x_1, \ldots, x_d) = 0$ equals

$$
\frac{(q^m - 1)^d}{q^m} \left(1 + (q^m - 1) \sum_{x_0, \ldots, x_d \in \mathbb{F}_{q^m}^\times} \prod_{I \colon a_I \neq 0} \prod_{j=0}^{m-1} E_\pi(a_I([x_0][x_1]^i \cdots [x_d]^i)^{q^j}) \right).
$$