Extra Problems 1 Solutions

1. Let \(G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \middle| a \in \mathbb{R}, a \neq 0 \right\} \). Determine whether \(G \) is a group under matrix multiplication.

Yes.

- Let \(A = \begin{bmatrix} a & a \\ a & a \end{bmatrix}, B = \begin{bmatrix} b & b \\ b & b \end{bmatrix} \in G \) where \(a, b \in \mathbb{R} \) are both nonzero. Then
 \[
 AB = \begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} b & b \\ b & b \end{bmatrix} = \begin{bmatrix} 2ab & 2ab \\ 2ab & 2ab \end{bmatrix}
 \]
 where \(2ab \neq 0 \), so \(AB \in G \).
- Since matrix multiplication is associative on \(M_2(\mathbb{R}) \), it is also associative on the subset \(G \) of \(M_2(\mathbb{R}) \).
- \(\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \in G \) is the identity element for \(G \) because for any \(A = \begin{bmatrix} a & a \\ a & a \end{bmatrix} \in G \),
 \[
 \begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} a & a \\ a & a \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} a & a \\ a & a \end{bmatrix} = \begin{bmatrix} a & a \\ a & a \end{bmatrix}.
 \]
- Let \(A = \begin{bmatrix} a & a \\ a & a \end{bmatrix} \in G \). Then the inverse of \(A \) in \(G \) is \(\begin{bmatrix} 1/4a & 1/4a \\ 1/4a & 1/4a \end{bmatrix} \) because
 \[
 \begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} 1/4a & 1/4a \\ 1/4a & 1/4a \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1/4a & 1/4a \\ 1/4a & 1/4a \end{bmatrix} \begin{bmatrix} a & a \\ a & a \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}.
 \]

2. Let \(X \) be a nonempty set. Determine whether \(\mathcal{P}(X) \), the set of all subsets of \(X \), is a group under the union operation.

No. The union operation is a binary operation on \(\mathcal{P}(X) \) since the union of any two subsets of \(X \) is still a subset of \(X \), and the operation is associative as well. For any \(A \in \mathcal{P}(X) \), \(A \cup \emptyset = \emptyset \cup A = A \), so \(\emptyset \) is an identity element for this binary structure. However, inverses do not always exist: take any nonempty subset \(A \) of \(X \) (which exists since \(X \neq \emptyset \)). Then \(A \cup B \neq \emptyset \) for all \(B \in \mathcal{P}(X) \), so \(A \) does not have an inverse.

3. Let \(G \) be a group. Prove that if \((ab)^2 = a^2b^2\) for all \(a, b \in G \), then \(G \) is abelian.

Proof. Let \(G \) be a group, and suppose that for all \(a, b \in G \), \((ab)^2 = a^2b^2\). Then, using left and right cancellation laws,

\[
(ab)^2 = a^2b^2 \Rightarrow abab = aabb \Rightarrow bab = abb \Rightarrow ba = ab
\]
for all \(a, b \in G \). Therefore, \(G \) is abelian.

4. \((\S 4, \#41)\) Let \(G \) be a group and \(g \) be one fixed element of \(G \). Show that the map \(i_g \), such that \(i_g(x) = gxg^{-1} \) for \(x \in G \), is an isomorphism of \(G \) with itself.

Proof. Let \(G \) be a group and fix an element \(g \in G \).

- Since \(G \) is a group, there exists \(g^{-1} \in G \). The map \(i_g \) is bijective because it has an inverse, namely \(i_{g^{-1}} \): for any \(x \in G \),

\[
(i_g \circ i_{g^{-1}})(x) = i_g \left(g^{-1}x \left(g^{-1} \right)^{-1} \right) = i_g \left(g^{-1}xg \right) = g \left(g^{-1}xg \right) g^{-1} = x
\]

\[
(i_{g^{-1}} \circ i_g)(x) = i_{g^{-1}} \left(gxg^{-1} \right) = g^{-1} \left(gxg^{-1} \right) g = x.
\]

- Let \(x, y \in G \). Then

\[
i_g(xy) = g(xy)g^{-1} = gxg^{-1}gyg^{-1} = i_g(x)i_g(y),
\]

so \(i_g \) satisfies the homomorphism property.

5. Determine with \(S \) is a subgroup of \(G \).

(a) \(G = \mathbb{Z} \) with addition, \(S = \mathbb{Z}^\geq \), the set of nonnegative integers

No. The inverse of 1 is -1, which is not \(\mathbb{Z}^\geq \).

(b) \(G = F \), the set of all real-valued functions on \(\mathbb{R} \), with addition, \(S = \{ f \in F \mid f(1) = 0 \} \)

Yes.

- Let \(f, g \in S \). Since \((f + g)(1) = f(1) + g(1) = 0 + 0 = 0 \), \(f + g \in S \).
- Let \(f_0 \) denote the identity element of \(F \) (so \(f_0(x) = 0 \) for all \(x \in \mathbb{R} \)). Then \(f_0(1) = 0 \), so \(f_0 \in S \).
- Let \(f \in S \). Then \((-f)(1) = -f(1) = -0 = 0 \), so \(-f \in S \).

(c) \(G = M_n(\mathbb{R}) \) with addition, \(S = \{ A \in M_n(\mathbb{R}) \mid A^t = -A \} \)

Yes.

- Let \(A, B \in S \). Then \((A + B)^t = A^t + B^t = -A + (-B) = -(A + B) \), so \(A + B \in S \).
- Since \(0^t = 0 = -0, 0 \in S \).
- Let \(A \in S \). Then \((-A)^t = -A^t = -(A) \), so \(-A \in S \).

6. (a) Let \(G \) be a group and \(H, K \leq G \). Prove that \(H \cup K \leq G \) if and only if \(H \subseteq K \) or \(K \subseteq H \).
Proof. Let G be a group and $H, K \leq G$.

(\Rightarrow) Suppose that $H \cup K \leq G$. Say that $H \not\subseteq K$. Then there exists $h \in H$ such that $h \not\in K$. We will show that $K \subseteq H$. Let $k \in K$. Since $h \in H \subseteq H \cup K$, $k \in K \subseteq H \cup K$, and $H \cup K \leq G$, by closure we know $hk \in H \cup K$. Then $hk \in H$ or $hk \in K$. Assume $hk \in K$. Since K is a subgroup and $k \in K$, $k^{-1} \in K$. Then by closure, $hk \in H$ or $hk \in K$.

(\Leftarrow) Suppose that $H \subseteq K$ or $K \subseteq H$. If $H \subseteq K$, then $H \cup K = K \leq G$. Similarly, if $K \subseteq H$, then $H \cup K = H \leq G$.

(b) Give an example of a group G and subgroups H_1, H_2, H_3 of G such that $H_1 \cup H_2 \cup H_3 \leq G$ and $H_i \not\subseteq H_j$ for all $i \neq j$.

Take G to be the Klein four-group $V = \{e, a, b, c\}$ and $H_1 = \langle a \rangle$, $H_2 = \langle b \rangle$, $H_3 = \langle c \rangle$. Then $H_1 \cup H_2 \cup H_3 = G$ but $H_i \not\subseteq H_j$ for all $i \neq j$.

7. Let a be an element of a group G. If the order of a is n, prove that $a^k = e$ if and only if n divides k.

Proof. Let a be an element of a group G and suppose that the order of a is n.

(\Rightarrow) Say that $a^k = e$. By the division algorithm, there exist integers q, r such that $k = nq + r$ and $0 \leq r < n$. Then

$$e = a^k = a^{nq + r} = (a^n)^q a^r = e^q a^r = a^r.$$

If $r > 0$, then this would contradict that fact that n is the smallest positive integer such that $a^n = e$. Therefore, $r = 0$, so $k = nq$ and hence n divides k.

(\Leftarrow) Suppose that n divides k. Then there exists $l \in \mathbb{Z}$ such that $nl = k$. So $a^k = a^{nl} = (a^n)^l = e^l = e$.

8. Let G be a cyclic group generated by an element a. If the order of G is n, prove that the generators of G are the elements of the form a^r where r is relatively prime to n.

Proof. Let G be a cyclic group generated by an element a, and suppose $|G| = n$. Then

$$a^r \text{ generates } G \iff \text{the order of } a^r \text{ is } n$$

$$\iff \frac{n}{\gcd(n, r)} = n$$

$$\iff \gcd(n, r) = 1.$$
9. Let $\phi : G \to G'$ be an isomorphism of a group $\langle G, * \rangle$ with a group $\langle G', *' \rangle$. Prove that if G is cyclic, then G' is also cyclic.

Proof. Let $\phi : G \to G'$ be an isomorphism of a group $\langle G, * \rangle$ with a group $\langle G', *' \rangle$. Suppose that G is cyclic, so $G = \langle a \rangle$ for some $a \in G$. Let $g' \in G'$. Since ϕ is bijective, there exists $g \in G$ such that $\phi(g) = g'$. Since G is generated by a, $g = a^n$ for some $n \in \mathbb{Z}$. This gives us

$$g' = \phi(g) = \phi(a^n) = (\phi(a))^n$$

by the homomorphism property, so $\phi(a)$ generates G' and hence G' is cyclic. \qed

10. How many generators does \mathbb{Z}_{103} have? How many distinct subgroups does it have? Use the fact that 103 is a prime number.

There are $103 - 1 = 102$ generators of \mathbb{Z}_{103} and only two distinct subgroups of \mathbb{Z}_{103}, since there is exactly one subgroup for each positive divisor of 103.