Extra Problems 2 Solutions

1. Find the maximum possible order of an element \(\sigma \in S_7 \), and give an example of such a \(\sigma \).

The following are all partitions of 7:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4 + 2 + 1</td>
<td>3 + 1 + 1 + 1 + 1</td>
</tr>
<tr>
<td>6 + 1</td>
<td>4 + 1 + 1 + 1</td>
<td>2 + 2 + 2 + 1</td>
</tr>
<tr>
<td>5 + 2</td>
<td>3 + 3 + 1</td>
<td>2 + 2 + 1 + 1 + 1</td>
</tr>
<tr>
<td>5 + 1 + 1</td>
<td>3 + 2 + 2</td>
<td>2 + 1 + 1 + 1 + 1 + 1</td>
</tr>
<tr>
<td>4 + 3</td>
<td>3 + 2 + 1 + 1</td>
<td>1 + 1 + 1 + 1 + 1 + 1 + 1</td>
</tr>
</tbody>
</table>

Since these partitions correspond to the possible cycle types of elements in \(S_7 \), the maximum possible order of an element in \(S_7 \) is the maximum least common multiple of the summands of a partition, which is \(\text{lcm}(4, 3) = 12 \). For example, \(\sigma = (1 \ 2 \ 3 \ 4)(5 \ 6 \ 7) \in S_7 \) has order 12.

2. Let \(\sigma = (a_1 \ a_2 \ldots \ a_k) \in S_n \). For any \(\tau \in S_n \), prove that \(\tau \sigma \tau^{-1} = (\tau(a_1) \ \tau(a_2) \ldots \ \tau(a_k)) \).

Proof. Let \(\sigma = (a_1 \ a_2 \ldots \ a_k) \in S_n \) and \(\tau \in S_n \). For \(i = 1, 2, \ldots, k - 1, \)

\[\tau \sigma \tau^{-1}(\tau(a_i)) = \tau \sigma(a_i) = \tau(a_{i+1}) . \]

Moreover,

\[\tau \sigma \tau^{-1}(\tau(a_k)) = \tau \sigma(a_k) = \tau(a_1) , \]

so \(\{\tau(a_1), \tau(a_2), \ldots, \tau(a_k)\} \) is an orbit of \(\tau \sigma \tau^{-1} \).

If \(y \in \{1, 2, \ldots, n\} - \{\tau(a_1), \tau(a_2), \ldots, \tau(a_k)\} \), then \(y = \tau(x) \) for some \(x \not\in \{a_1, a_2, \ldots, a_k\} \) since \(\tau \) is bijective. Then

\[\tau \sigma \tau^{-1}(y) = \tau \sigma \tau^{-1}(\tau(x)) = \tau \sigma(x) = \tau(x) = y \]

since \(\sigma \) fixes \(x \). Therefore, \(\tau \sigma \tau^{-1} \) is the cycle \((\tau(a_1) \ \tau(a_2) \ldots \ \tau(a_k)) \). \(\Box \)

3. (§8, #47) Show that if \(n \geq 3 \), then the only element \(\sigma \) of \(S_n \) satisfying \(\sigma \gamma = \gamma \sigma \) for all \(\gamma \in S_n \) is \(\sigma = \iota \).

Proof. Let \(n \geq 3 \) and \(\sigma \in S_n \). Suppose that \(\sigma \gamma = \gamma \sigma \) for all \(\gamma \in S_n \). If \(\sigma \neq \iota \), then \(\sigma(a) = b \) for some \(a \neq b \) in \(\{1, 2, \ldots, n\} \). Take some \(\gamma \in S_n \) such that \(\gamma(a) = a \) and
\[\gamma(b) = c \text{ for some } c \not\in \{a, b\} \text{ (which exists since } n \geq 3) \text{. Then} \]
\[\sigma\gamma(a) = \sigma(a) = b \]
\[\gamma\sigma(a) = \gamma(b) = c, \]
so \(\sigma\gamma \neq \gamma\sigma \), which is a contradiction. Therefore, \(\sigma = \iota \). \qed

4. (a) Let \(n \geq 3 \). Describe an algorithm for writing any \(\sigma \in A_n \) as a product of 3-cycles.
 \textit{Hint:} For distinct \(a, b, c, d \), \((a b)(b c) = (a b c) \) and \((a b)(c d) = (a b c)(b c d)\).
 Since any \(\sigma \in A_n \) can be written as the product of an even number of transpositions, we can write \(\sigma \) as \(\tau_1 \tau_2 \tau_3 \cdots \tau_k \) for some transpositions \(\tau_i \). Take any pair \(\tau_i \tau'_i \) in the decomposition. If \(\tau_i = \tau'_i \), then their product is \(\iota \). Otherwise, \(\tau_i \) and \(\tau'_i \) share exactly 1 element or are disjoint, so using the hint, we can replace the pair with a 3-cycle.

(b) Is the statement true for odd permutations? Explain.
 No. Since any cycle of length 3 is even, any product of 3-cycles must also be even.

5. Let \(G = \langle a \rangle \) be a cyclic group of order 15. Find all of the left cosets of \(H = \langle a^5 \rangle \) in \(G \).
 Since \(G = \langle a \rangle \) has order 15, then \(H = \langle a^5 \rangle = \{e, a^5, a^{10}\} \). The left cosets of \(H \) in \(G \) are
 \[H = \{e, a^5, a^{10}\} \]
 \[aH = \{a, a^6, a^{11}\} \]
 \[a^2H = \{a^2, a^7, a^{12}\} \]
 \[a^3H = \{a^3, a^8, a^{13}\} \]
 \[a^4H = \{a^4, a^9, a^{14}\} \]

6. (§10, #38) Prove Theorem 10.14. \textit{[Hint:} Let \(\{a_iH \mid i = 1, \ldots, r\} \) be the collection of distinct left cosets of \(H \) in \(G \) and \(\{b_jK \mid j = 1, \ldots, s\} \) be the collection of distinct left cosets of \(K \) in \(H \). Show that \(\{(a_ib_j)K \mid i = 1, \ldots, r; j = 1, \ldots, s\} \) is the collection of distinct left cosets of \(K \) in \(G \).\]
 \textit{Proof.} Let \(A = \{a_iH \mid i = 1, \ldots, r\} \) be the collection of distinct left cosets of \(H \) in \(G \) and \(B = \{b_jK \mid j = 1, \ldots, s\} \) be the collection of distinct left cosets of \(K \) in \(H \). Consider the set \(C = \{(a_ib_j)K \mid i = 1, \ldots, r; j = 1, \ldots, s\} \). We’ll show that every element in \(G \) lives in some coset in \(C \), and that the cosets in \(C \) are pairwise disjoint. Let \(g \in G \). Then \(g \in a_iH \) for some \(i \in \{1, \ldots, r\} \), so
(a) \(g = a_i h \) for some \(h \in H \). Since \(h \in H \), then \(h \in b_j K \) for some \(j \in \{1, \ldots, s\} \), so \(h = b_j k \) for some \(k \in K \). Then \(g = a_i h = a_i b_j k \in (a_i b_j) K \). Now take any \((a_i b_j) K \) and \((a_m b_n) K \) in \(C \). If there exists some \(g \in (a_i b_j) K \cap (a_m b_n) K \), then \(g = (a_i b_j) k_1 \) and \(g = (a_m b_n) k_2 \) for some \(k_1, k_2 \in K \). Since \(b_j, b_n \in H \) and \(K \leq H \), then \(b_j k_1, b_n k_2 \in H \). Therefore, \(g = a_i (b_j k_1) \in a_i H \) and \(g = a_m (b_n k_2) \in a_m H \). Since the cosets in \(A \) are distinct and hence pairwise disjoint, \(i = m \). Notice that \(a_i^{-1} g = b_j k_1 \in b_j K \) and \(a_m^{-1} g = b_n k_2 \in b_n K \). Since \(i = m \) and the cosets in \(B \) are pairwise disjoint, then \(j = n \). Hence, the cosets in \(C \) are pairwise disjoint, so \(C \) is the set of distinct left cosets of \(K \) in \(G \). \(\square \)

7. Let \(G \) be a finite group with an odd number of elements.

(a) Prove that \(x^2 = e \) has a unique solution in \(G \).

\[\textbf{Proof.} \] Let \(G \) be a finite group with an odd number of elements. For any \(a \in G \), if \(a^2 = e \), then the order of \(a \) divides 2, so the order of \(a \) is 1 or 2. By Lagrange’s Theorem, the order of \(a \) must divide the order of \(G \), so the order of \(a \) cannot be 2 as the order of \(G \) is odd. Therefore, the order of \(a \) is 1, so \(a = e \). Therefore, the only solution to \(x^2 = e \) in \(G \) is \(x = e \). \(\square \)

(b) If \(G \) is abelian, show that the product of all of the elements of \(G \) is \(e \).

\[\textbf{Proof.} \] Let \(|G| = 2k + 1 \) for some nonnegative integer \(k \). If \(k = 0 \), then \(|G| = 1 \), so \(G \) contains only \(e \), so we are done. Otherwise, let \(k \in \mathbb{Z}^+ \) and \(a_1, a_2, \ldots, a_{2k+1} \) be the elements of \(G \). By part (a), the only element of order 2 is \(e \), so for any nonidentity element \(b \in G \), \(b^{-1} \neq b \). We can then list the elements of \(G \) as \(e, b_1, b_1^{-1}, b_2, b_2^{-1}, \ldots, b_k, b_k^{-1} \). Therefore, since \(G \) is abelian,

\[
a_1 a_2 \cdots a_{2k+1} = e b_1 b_1^{-1} b_2 b_2^{-1} \cdots b_k b_k^{-1} = e e e \cdots e = e.
\]

\(\square \)

8. (a) \((\S 11, \#18)\) Are the groups \(\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24} \) and \(\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40} \) isomorphic? Why or why not?

No. Using the fact that \(\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_{mn} \) if and only if \(\gcd(m, n) = 1 \), we have

\[
\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24} \simeq \mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_3 \times \mathbb{Z}_8 \\
\simeq \mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_5
\]

and

\[
\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40} \simeq \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_8 \\
\simeq \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_5.
\]
Notice that $\mathbb{Z}_2 \times \mathbb{Z}_8 \ncong \mathbb{Z}_4 \times \mathbb{Z}_4$.

(b) $(\S 11, \#20)$ Are the groups $\mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15}$ and $\mathbb{Z}_3 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10}$ isomorphic? Why or why not?

Yes. Using the fact that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ if and only if $\gcd(m,n) = 1$, we have

\[
\mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15} \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \\
\cong \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \\
\cong \mathbb{Z}_3 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10}.
\]

9. (a) Let G_1 and G_2 be groups, and let $H_1 \leq G_1$ and $H_2 \leq G_2$. Prove that $H_1 \times H_2 \leq G_1 \times G_2$.

Let G_1, G_2 be groups and $H_1 \leq G_1, H_2 \leq G_2$.

- Let $(a_1, a_2), (b_1, b_2) \in H_1 \times H_2$. Since H_1 and H_2 are closed under their respective binary operations, $a_1 b_1 \in H_1$ and $a_2 b_2 \in H_2$. Then $(a_1, a_2)(b_1, b_2) = (a_1 b_1, a_2 b_2) \in H_1 \times H_2$.
- Since H_1 contains the identity element e_1 of G_1 and H_2 contains the identity element e_2 of G_2, $(e_1, e_2) \in H_1 \times H_2$.
- Let $(a_1, b_1) \in H_1 \times H_2$. Since $a_1 \in H_1, a_1^{-1} \in H_1$, and since $a_2 \in H_2, a_2^{-1} \in H_2$. Thus, $(a_1^{-1}, b_1^{-1}) \in H_1 \times H_2$.

Therefore, $H_1 \times H_2 \leq G_1 \times G_2$.

(b) Find an example of groups G_1 and G_2 and a subgroup H of $G_1 \times G_2$ such that H is not a direct product of a subgroup of G_1 and a subgroup of G_2.

Take $G_1 = G_2 = \mathbb{Z}$ and the subgroup $H = \langle (1,1) \rangle = \{(d,d) \mid d \in \mathbb{Z}\}$ of $\mathbb{Z} \times \mathbb{Z}$. Say that $H = H_1 \times H_2$ for some subgroups H_1, H_2 of \mathbb{Z}. Since $(1, 1) \in H = H_1 \times H_2$, then $1 \in H_1$. Since H_2 is a subgroup of \mathbb{Z}, $0 \in H_2$. Therefore, $(1, 0) \in H_1 \times H_2$, but $(1, 0) \neq (d, d)$ for any $d \in \mathbb{Z}$. Therefore, H is not a direct product of subgroups of \mathbb{Z}.