1. Prove or disprove the following statements.

(a) \((\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x + y = 0) \)

Proof. True. Let \(x \in \mathbb{R} \). Take \(y = -x \). Then \(x + y = x - x = 0 \).

(b) \((\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(x + y = 0) \)

Proof. False. Let \(y \in \mathbb{R} \). Take \(x = 1 - y \). Then \(x + y = 1 - y + y = 1 \neq 0 \). Therefore, its negation, \((\forall y \in \mathbb{R})(\exists x \in \mathbb{R})(x + y \neq 0) \), is true.

(c) \((\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(xy = 0) \)

Proof. True. Take \(y = 0 \). Then for all \(x \in \mathbb{R} \), \(xy = x(0) = 0 \).

(d) \((\forall n \in \mathbb{Z}^+)(n \text{ is even or } n \text{ is odd}) \)

Proof. True. Let \(n \in \mathbb{Z}^+ \). Then either \(n \) is even, or \(n \) is not even, which by definition means \(n \) is odd.

(e) \((\forall n \in \mathbb{Z}^+)(n \text{ is even}) \text{ or } (\forall n \in \mathbb{Z}^+)(n \text{ is odd}) \)

Proof. False. Consider the integers 1, which is odd, and 2, which is even. Therefore, its negation, \((\exists n \in \mathbb{Z}^+)(n \text{ is odd}) \) and \((\exists n \in \mathbb{Z}^+)(n \text{ is even}) \), is true.

2. Let \(X \) and \(Y \) be sets. Prove that \(\mathcal{P}(X \cap Y) = \mathcal{P}(X) \cap \mathcal{P}(Y) \).

Proof. (\(\subseteq \)) Let \(A \in \mathcal{P}(X \cap Y) \). Then \(A \subseteq X \cap Y \). Since \(X \cap Y \subseteq X, Y \), then \(A \subseteq X \) and \(A \subseteq Y \). Therefore, \(A \in \mathcal{P}(X) \) and \(A \in \mathcal{P}(Y) \), so \(A \in \mathcal{P}(X) \cap \mathcal{P}(Y) \).

(\(\supseteq \)) Let \(A \in \mathcal{P}(X) \cap \mathcal{P}(Y) \). Then \(A \in \mathcal{P}(X) \) and \(A \in \mathcal{P}(Y) \). Since \(A \subseteq X \) and \(A \subseteq Y \), then \(A \subseteq X \cap Y \). Therefore, \(A \in \mathcal{P}(X \cap Y) \).

3. Let \(A, B, C, D \) be sets. Prove that

(a) \(A \times (B \cup C) = (A \times B) \cup (A \times C) \)

Proof. (\(\subseteq \)) Let \((x, y) \in A \times (B \cup C) \). Then \(x \in A \) and \(y \in B \cup C \), and so \(y \in B \) or \(y \in C \).

- If \(y \in B \), then \((x, y) \in A \times B \).
- If \(y \in C \), then \((x, y) \in A \times C \).

Since \((x, y) \in A \times B \) or \((x, y) \in A \times C \), \((x, y) \in (A \times B) \cup (A \times C) \).

(\(\supseteq \)) Now let \((x, y) \in (A \times B) \cup (A \times C) \). Then \((x, y) \in A \times B \) or \((x, y) \in A \times C \).
4. Let X, Y, Z be sets and $f: X \to Y$, $g: Y \to Z$ be functions.

(a) Prove that if $g \circ f: X \to Z$ is an injection, then f is an injection. Must g be injective?

\begin{proof}
Assume that $g \circ f$ is injective. Let $x_1, x_2 \in X$ and suppose that $f(x_1) = f(x_2)$. Taking g of both sides, we have $g(f(x_1)) = g(f(x_2))$, i.e. $(g \circ f)(x_1) = (g \circ f)(x_2)$. Since $g \circ f$ is injective, $x_1 = x_2$, so f is also injective. No, g need not be injective. Take $f: \{a\} \to \{b_1, b_2\}$ where $f(a) = b_1$ and $g: \{b_1, b_2\} \to \{a\}$ where $g(b_1) = a$ and $g(b_2) = a$. Notice $g \circ f: \{a\} \to \{a\}$ where $(g \circ f)(a) = a$ is injective but g is not.
\end{proof}

(b) Prove that if $g \circ f: X \to Z$ is a surjection, then g is a surjection. Must f be surjective?

\begin{proof}
Assume that $g \circ f$ is surjective. Let $z \in Z$. Since $g \circ f$ is surjective, there exists $x \in X$ such that $(g \circ f)(x) = z$. Since $g(f(x)) = z$, where $f(x)$ is some element in Y, g is also surjective. No, f need not be surjective. Take $f: \{a\} \to \{b_1, b_2\}$ where $f(a) = b_1$ and $g: \{b_1, b_2\} \to \{a\}$ where $g(b_1) = a$ and $g(b_2) = a$. Notice $g \circ f: \{a\} \to \{a\}$ where $(g \circ f)(a) = a$ is surjective but f is not.
\end{proof}

5. Let $f: X \to Y$ be a function. Prove that f is injective if and only if \overrightarrow{f} is injective.

\begin{proof}
(\Rightarrow) Suppose that f is injective. Let $A_1, A_2 \in \mathcal{P}(X)$ and suppose that $\overrightarrow{f}(A_1) = \overrightarrow{f}(A_2)$. Then $\{f(x) \mid x \in A_1\} = \{f(x) \mid x \in A_2\}$. Let $x_1 \in A_1$. Then $f(x_1) \in \{f(x) \mid x \in A_1\}$, so $f(x_1) \in \{f(x) \mid x \in A_2\}$. This means that $f(x_1) = f(x_2)$ for some $x_2 \in A_2$. Since f is injective, $x_1 = x_2$, so $x_1 \in A_2$ and hence $A_1 \subseteq A_2$. A similar argument shows that $A_2 \subseteq A_1$, so $A_1 = A_2$ and therefore \overrightarrow{f} is also injective.

(\Leftarrow) Suppose that \overrightarrow{f} is injective. Let $x_1, x_2 \in X$ and suppose that $f(x_1) = f(x_2)$. Then $\overrightarrow{f}(\{x_1\}) = \{f(x_1)\} = \{f(x_2)\} = \overrightarrow{f}(\{x_2\})$. Since \overrightarrow{f} is injective, $\{x_1\} = \{x_2\}$.
\end{proof}
6. Let $f: X \to Y$ be a function.

(a) Prove that for any $A \in \mathcal{P}(X)$, $A \subseteq \mathcal{f} (\mathcal{f} (A))$. If, in addition, f is injective, prove that $A = \mathcal{f} (\mathcal{f} (A))$.

Proof. Let $A \in \mathcal{P}(X)$. If $a \in A$, then $f(a) \in \mathcal{f} (\mathcal{f} (A))$. Let $C = \mathcal{f} (\mathcal{f} (A))$, so $f(a) \in C$. Therefore, $a \in \mathcal{f} (C) = \mathcal{f} (\mathcal{f} (A))$, so we have $A \subseteq \mathcal{f} (\mathcal{f} (A))$.

Now assume f is an injection. Let $x \in \mathcal{f} (\mathcal{f} (A))$. Then $f(x) \in \mathcal{f} (A)$, so $f(x) = f(a)$ for some $a \in A$. Since f is injective, $x = a$, so $x \in A$. Therefore, $\mathcal{f} (\mathcal{f} (A)) \subseteq A$, and hence $A = \mathcal{f} (\mathcal{f} (A))$. \qed

(b) Prove that f is injective if and only if \mathcal{f} is surjective.

Proof. (\Rightarrow) Suppose that f is injective. Let $A \in \mathcal{P}(X)$. By part (a), $A = \mathcal{f} (\mathcal{f} (A))$. Notice that $\mathcal{f} (A)$ is a subset of Y, so \mathcal{f} is surjective.

(\Leftarrow) Suppose that \mathcal{f} is a surjection. Let $x_1, x_2 \in X$ and assume that $f(x_1) = f(x_2)$. Since f is surjective and $\{x_1\} \in \mathcal{P}(X)$, there exists $B \in \mathcal{P}(Y)$ such that $\mathcal{f} (B) = \{x_1\}$. This means that $f(x_1) \in B$, so $f(x_2) \in B$. Then $x_2 \in \mathcal{f} (B) = \{x_1\}$, so $x_2 = x_1$. Thus, f is injective. \qed

7. Let X, Y be subsets of \mathbb{N}_n, where n is some positive integer. Prove that if $|X| + |Y| > n$, then $X \cap Y \neq \emptyset$.

Proof. Let X, Y be subsets of \mathbb{N}_n, where n is some positive integer. Assume that $|X| + |Y| > n$. By the inclusion-exclusion principle, $|X \cup Y| = |X| + |Y| - |X \cap Y|$, so by rearranging terms, $|X \cap Y| = |X| + |Y| - |X \cup Y|$. Since X and Y are subsets of \mathbb{N}_n, $X \cup Y$ is also a subset of \mathbb{N}_n. This implies that $|X \cup Y| \leq n$, so $-|X \cup Y| \geq n$. Then

$$|X \cap Y| = |X| + |Y| - |X \cup Y|$$

$$\geq |X| + |Y| - n$$

$$> n - n = 0$$

Note that the last line follows from the initial assumption. Since the cardinality of $X \cap Y$ is positive, $X \cap Y$ is nonempty. \qed

8. Find the number of positive integers less than or equal to 1,000,000 that are neither perfect squares nor perfect cubes.
\textbf{Proof.} We first count the number of positive integers less than or equal to 1,000,000 that are perfect squares or perfect cubes.

- \textbf{Perfect square:} \(n^2 \leq 1,000,000 \Rightarrow n \leq 1000 \)
- \textbf{Perfect cube:} \(n^3 \leq 1,000,000 \Rightarrow n \leq 100 \)
- \textbf{Perfect square and perfect cube:} \(n^6 \leq 1,000,000 \Rightarrow n \leq 10 \)

Let \(X = \{ n \in \mathbb{Z}^+ \mid n \leq 1,000,000 \text{ and } n \text{ is a perfect square} \} \) and \(Y = \{ n \in \mathbb{Z}^+ \mid n \leq 1,000,000 \text{ and } n \text{ is a perfect cube} \} \). By the inclusion-exclusion principle,

\[|X \cup Y| = |X| + |Y| - |X \cap Y| = 1000 + 100 - 10 = 1090. \]

Therefore, the number of positive integers less than or equal to 1,000,000 that are neither perfect squares nor perfect cubes is \(1,000,000 - 1090 = 998,910 \). \(\square \)

9. Remove two diagonally opposite corner squares from a chessboard. Prove that the remaining board cannot be covered by tiles consisting of exactly two squares (i.e. \(2 \times 1 \) tiles).

\textit{Proof.} Notice that removing two diagonally opposite corner squares will result in removing two squares of the same color. Without loss of generality, remove the two white corner squares. Suppose, for a contradiction, that the board can be covered with these \(2 \times 1 \) tiles. Let \(X = \{ \text{all tiles in the covering} \} \) and \(Y = \{ \text{all white squares remaining on the board} \} \). Since each tile covers exactly one black square and one white square, define the function \(f : X \rightarrow Y \) where \(f \) maps each tile to the white square that it covers. However, \(|X| = 31 > 30 = |Y| \), so by the pigeonhole principle, \(f \) is not injective. So there exist two tiles that cover the same white square, which is a contradiction. Therefore, no such covering exists. \(\square \)

10. Suppose that \(A \) and \(B \) are non-empty finite sets of real numbers such that \(A \subseteq B \). Prove that \(\min B \leq \min A \leq \max A \leq \max B \).
Proof. Suppose that A and B are non-empty finite sets of real numbers such that $A \subseteq B$. Since A and B are both non-empty finite sets of real numbers, min A, max A, min B, and max B all exist. Since max A is the maximum of element of A and min $A \in A$, min $A \leq$ max A. Since min B is the minimum element of B, and min A is in A and hence also in B, min $B \leq$ min A. Lastly, since max B is the maximum element of B, and max A is in A and hence also in B, max $A \leq$ max B. Therefore, min $B \leq$ min $A \leq$ max $A \leq$ max B. \square