Homework 5 Solutions and Rubric

Point distribution (out of 20 points in total):

- Problem 11.2 – 4 points.
- Problem 12.2 – 3 points.
- Problem III.14 – 4 points.
- \[\sum_{i=0}^{n} \binom{n}{i} = \sum_{i=0}^{n} \binom{n}{i} \] – 4 points.
- Completeness – 5 points. This is for attempting the remaining 5 problems.

See the back of the book for the remaining solutions.

Problems III

14. For \(n \in \mathbb{Z}^+ \), suppose that \(A \subseteq \mathbb{N}_{2n} \) and \(|A| = n + 1 \). Prove that \(A \) contains a pair of distinct integers \(a, b \) such that \(a \) divides \(b \).

[Let \(f(a) \) be the greatest odd integer which divides \(a \) and apply the pigeonhole principle to \(f \).]

Proof. Let \(n \in \mathbb{Z}^+ \). Suppose that \(A \subseteq \mathbb{N}_{2n} \) and \(|A| = n + 1 \). For any \(a \in A \), a positive odd integer divisor of \(a \) must live in the set \(B = \{ x \in \mathbb{N}_{2n} \mid x \text{ is odd} \} = \{ 2k + 1 \mid k \in \mathbb{Z}^+, 0 \leq k \leq n - 1 \} \). Define the function \(f : A \rightarrow B \) where, for any \(a \in A \), \(f(a) \) is the greatest odd integer which divides \(a \). Since \(|A| = n + 1 > n = |B| \), by the pigeonhole principle, \(f \) is not injective. This means that there exist distinct \(a, b \in A \) such that \(f(a) = f(b) \).

Since \(f(a) \) and \(f(b) \) are the greatest odd integers which divide \(a \) and \(b \), respectively, then we can write \(a = 2^s f(a) \) and \(b = 2^t f(b) \) for some nonnegative integers \(s, t \).

Without loss of generality, suppose \(t \geq s \). Then

\[
b = 2^t f(b) = 2^{t-s} 2^s f(b) = 2^{t-s} 2^s f(a) = 2^{t-s} a.
\]

Since \(t \geq s \), \(t - s \) is some nonnegative integer, so \(2^{t-s} \in \mathbb{Z} \). Therefore, \(a \) divides \(b \). \(\square \)

19. Prove Leibniz’s rule for higher order derivatives of products,

\[
\frac{d^n(uv)}{dx^n} = \sum_{i=0}^{n} \binom{n}{i} \frac{d^i u}{dx^i} \frac{d^{n-i} v}{dx^{n-i}} \quad \text{for } n \in \mathbb{Z}^+,
\]

by induction on \(n \).
Proof. Prove by induction on n. Base case: If $n = 1$, then

$$
\frac{d(uv)}{dx} = u \frac{dv}{dx} + \frac{du}{dx} v = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) u \frac{dv}{dx} + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \frac{du}{dx} v = \sum_{i=0}^{1} \binom{1}{i} \frac{d^i u}{dx^i} \frac{d^{n-i} v}{dx^{n-i}}.
$$

Inductive step: Suppose that $\frac{d^k(uv)}{dx^k} = \sum_{i=0}^{k} \binom{k}{i} \frac{d^i u}{dx^i} \frac{d^{k-i} v}{dx^{k-i}}$ for some $k \in \mathbb{Z}^+$. Then

$$
\frac{d^{k+1}(uv)}{dx^{k+1}} = \frac{d}{dx} \left(\frac{d^k(uv)}{dx^k} \right) = \frac{d}{dx} \left(\sum_{i=0}^{k} \binom{k}{i} \frac{d^i u}{dx^i} \frac{d^{k-i} v}{dx^{k-i}} \right)
$$

$$
= \sum_{i=0}^{k} \binom{k}{i} \frac{d}{dx} \left(\frac{d^i u}{dx^i} \frac{d^{k-i} v}{dx^{k-i}} \right) = \sum_{i=0}^{k} \binom{k}{i} \left(\frac{d^{i+1} u}{dx^{i+1}} \frac{d^{k-i} v}{dx^{k-i}} + \frac{d^i u}{dx^i} \frac{d^{k-i+1} v}{dx^{k-i+1}} \right)
$$

$$
= \sum_{i=0}^{k} \binom{k}{i} \frac{d^i u}{dx^i} \frac{d^{k-i+1} v}{dx^{k-i+1}} + \sum_{i=0}^{k} \binom{k}{i} \frac{d^{i+1} u}{dx^{i+1}} \frac{d^{k-i} v}{dx^{k-i}}
$$

$$
= \sum_{i=0}^{k} \binom{k}{i} \frac{d^i u}{dx^i} \frac{d^{k-i+1} v}{dx^{k-i+1}} + \sum_{i=1}^{k+1} \binom{k}{i-1} \frac{d^i u}{dx^i} \frac{d^{k-i+1} v}{dx^{k-i+1}}
$$

$$
= \binom{k}{0} \frac{d^{k+1} u}{dx^{k+1}} + \sum_{i=1}^{k} \left[\binom{k}{i} + \binom{k}{i-1} \right] \frac{d^i u}{dx^i} \frac{d^{k-i+1} v}{dx^{k-i+1}}
$$

$$
= \binom{k}{0} \frac{d^{k+1} u}{dx^{k+1}} + \sum_{i=1}^{k} \binom{k+1}{i} \frac{d^i u}{dx^i} \frac{d^{k-i+1} v}{dx^{k-i+1}} + \binom{k}{k} \frac{d^{k+1} v}{dx^{k+1}}
$$

$$
= \binom{k+1}{0} \frac{d^{k+1} u}{dx^{k+1}} + \sum_{i=1}^{k+1} \binom{k+1}{i} \frac{d^i u}{dx^i} \frac{d^{k+1-i} v}{dx^{k+1-i}}
$$

$$
= \sum_{i=0}^{k+1} \binom{k+1}{i} \frac{d^i u}{dx^i} \frac{d^{k+1-i} v}{dx^{k+1-i}}
$$

$$
= \sum_{i=0}^{k+1} \binom{k+1}{i} \frac{d^i u}{dx^i} \frac{d^{k+1-i} v}{dx^{k+1-i}}
$$
If you prefer prime notation for the derivative:

\[(uv)^{(k+1)} = ((uv)^{(k)})'\]

\[= \left(\sum_{i=0}^{k} \binom{k}{i} u^{(i)} v^{(k-i)} \right)'
\]

\[= \sum_{i=0}^{k} \binom{k}{i} \left(u^{(i)} v^{(k-i)} \right)'
\]

\[= \sum_{i=0}^{k} \binom{k}{i} \left(u^{(i)} v^{(k-i+1)} + u^{(i+1)} v^{(k-i)} \right)
\]

\[= \sum_{i=0}^{k} \binom{k}{i} \left(u^{(i)} v^{(k-i+1)} \right) + \sum_{i=0}^{k} \binom{k}{i} \left(u^{(i+1)} v^{(k-i)} \right)
\]

\[= \sum_{i=0}^{k} \binom{k}{i} \left(u^{(i)} v^{(k-i+1)} \right) + \sum_{i=1}^{k+1} \binom{k}{i-1} \left(u^{(i)} v^{(k-i+1)} \right)
\]

\[= \binom{k}{0} (uv^{(k+1)}) + \sum_{i=1}^{k} \binom{k}{i} \left(u^{(i)} v^{(k-i+1)} \right) + \sum_{i=1}^{k} \binom{k}{i-1} \left(u^{(i)} v^{(k-i+1)} \right)
\]

\[+ \binom{k}{k} \left(u^{(k+1)} v \right)
\]

\[= \binom{k}{0} (uv^{(k+1)}) + \sum_{i=1}^{k} \left[\binom{k}{i} + \binom{k}{i-1} \right] \left(u^{(i)} v^{(k-i+1)} \right) + \binom{k}{k} \left(u^{(k+1)} v \right)
\]

\[= \binom{k}{0} (uv^{(k+1)}) + \sum_{i=1}^{k} \binom{k+1}{i} \left(u^{(i)} v^{(k-i+1)} \right) + \binom{k}{k} \left(u^{(k+1)} v \right)
\]

\[= \binom{k+1}{0} (uv^{(k+1)}) + \sum_{i=1}^{k} \binom{k+1}{i} \left(u^{(i)} v^{(k-i+1)} \right) + \binom{k+1}{k+1} \left(u^{(k+1)} v \right)
\]

\[= \sum_{i=0}^{k+1} \binom{k+1}{i} \left(u^{(i)} v^{(k+1-i)} \right)
\]

For any nonnegative integer \(n\), show that \(\sum_{i=0}^{n} \binom{n}{i} 2^i = 3^n\).

Proof. By the binomial theorem, for any nonnegative integer \(n\), \(3^n = (1 + 2)^n = \)
\[\sum_{i=0}^{n} \binom{n}{i} 1^{n-i} 2^i = \sum_{i=0}^{n} \binom{n}{i} 2^i. \]

- For any positive integer \(n \), prove that \(\sum_{i=0}^{n} \binom{n}{i} = \sum_{i=0}^{n} \binom{n}{i} 2^i \). Hint for one way of proving this: If \(X \) is set of cardinality \(n \), find a bijection between the set of elements of \(\mathcal{P}(X) \) of even cardinality and the set of elements of \(\mathcal{P}(X) \) of odd cardinality.

Proof. Let \(X \) be a nonempty set of cardinality \(n \). Let \(A = \{ S \in \mathcal{P}(X) \mid |S| \text{ is even} \} \) and \(B = \{ S \in \mathcal{P}(X) \mid |S| \text{ is odd} \} \). Fix an element \(x \in X \). Define \(f: A \to B \) by \(f(S) = \begin{cases} S \cup \{ x \} & \text{if } x \not\in S \\ S \setminus \{ x \} & \text{if } x \in S \end{cases} \) for any \(S \in A \). Notice that \(f \) is a map into \(B \) because adding or removing a single element from a set of even cardinality results in a set of odd cardinality.

\(f \) is bijective because \(g: B \to A \) where \(g(S) = \begin{cases} S \setminus \{ x \} & \text{if } x \not\in S \\ S \cup \{ x \} & \text{if } x \in S \end{cases} \) for \(S \in B \) is the inverse of \(f \):

- For \(S \in A \),
 \[
 (g \circ f)(S) = g(f(S)) = \begin{cases} \{ S \cup \{ x \} \} & \text{if } x \not\in S \\ \{ S \setminus \{ x \} \} & \text{if } x \in S \end{cases} = S
 \]

- For \(S \in B \),
 \[
 (f \circ g)(S) = f(g(S)) = \begin{cases} \{ f(S) \cup \{ x \} \} & \text{if } x \not\in S \\ \{ f(S) \setminus \{ x \} \} & \text{if } x \in S \end{cases} = S
 \]
Alternative proof: By the binomial theorem, for any positive integer \(n \),

\[
0 = (1 + (-1))^n = \sum_{i=0}^{n} \binom{n}{i} 1^{n-i}(-1)^i
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} (-1)^i
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} (-1)^i + \sum_{i=0}^{n} \binom{n}{i} (-1)^i
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} \quad \text{if } i \text{ is even} + \sum_{i=0}^{n} \binom{n}{i} \quad \text{if } i \text{ is odd}
\]

and therefore \(\sum_{i=0}^{n} \binom{n}{i} \quad \text{if } i \text{ is even} = \sum_{i=0}^{n} \binom{n}{i} \quad \text{if } i \text{ is odd}. \) \(\square \)