Homework \#6

5.3.7:

(a) $\vec{q}^{(0)}=[1,1]^{T}$ and $A \vec{q}^{(0)}=[9,-1]^{T}$ so $s_{1}=9$ and $\vec{q}^{(1)}=[1,-1 / 9]^{T}$. We continue this process to get the table:

j	s_{j}	$\left(\bar{q}^{(j)}\right)^{T}$
1	9	$[1,-0.111111111111111]$
2	7.88888888888889	$[1,-0.267605633802817]$
3	7.73239436619718	$[1,-0.293260473588342]$
4	7.70243441266840	$[1,-0.298290834330602]$
5	7.70170916566940	$[1,-0.298413090509221]$
6	7.70158690949078	$[1,-0.298433701718909]$
7	7.70156629828109	$[1,-0.298437176634043]$
7	7.70156282336596	$[1,-0.298437762483838]$
8	7.70156223751616	$[1,-0.298437861254642]$

and the s_{j} and $\vec{q}^{(j)_{2}}$ are no longer changing in 6 decimal places.

1.7.10:

(a) $\operatorname{det}[2]=2 \neq 0$ and

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
2 & 1 \\
-2 & 0
\end{array}\right] & =2 \neq 0 \\
\operatorname{det}\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 0 & 0 \\
4 & 1 & -2
\end{array}\right] & =-2 \neq 0 \\
\operatorname{det}\left[\begin{array}{cccc}
2 & 1 & -1 & 3 \\
-2 & 0 & 0 & 0 \\
4 & 1 & -2 & 6 \\
-6 & -1 & 2 & -3
\end{array}\right] & =-6 \neq 0 .
\end{aligned}
$$

Since none of these determinants are zero, A can be transformed to upper triangular form by operations of type 1 only.
(b) Gaussian elimination:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & 13 \\
-2 & 0 & 0 & 0 & -2 \\
4 & 1 & -2 & 6 & 24 \\
-6 & -1 & 2 & -3 & -14
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & 13 \\
0 & 1 & -1 & 3 & 11 \\
0 & -1 & 0 & 0 & -2 \\
0 & 2 & -1 & 6 & 25
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & 13 \\
0 & 1 & -1 & 3 & 11 \\
0 & 0 & -1 & 3 & 9 \\
0 & 0 & 1 & 0 & 3
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 & 13 \\
0 & 1 & -1 & 3 & 11 \\
0 & 0 & -1 & 3 & 9 \\
0 & 0 & 0 & 3 & 12
\end{array}\right],}
\end{aligned}
$$

where multipliers were $m_{21}=-1, m_{31}=2, m_{41}=-3$ and $m_{32}=-1, m_{42}=2$ and $m_{43}=-1$.
(c) Back substitution gives

$$
\begin{aligned}
& x_{4}=4 \\
& x_{3}=\frac{9-12}{-1}=3 \\
& x_{2}=\frac{11+3-12}{1}=2 \\
& x_{1}=\frac{13-2+3-12}{2}=1
\end{aligned}
$$

Checking, we see

$$
A \vec{x}=\left[\begin{array}{c}
13 \\
-2 \\
24 \\
-14
\end{array}\right]=\vec{b}
$$

1.7.37: Let

$$
B=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
0 & & & \\
\vdots & & A^{(1)} & \\
0 & & &
\end{array}\right]
$$

We show $b_{i j}=b_{j i}$, for $i, j=2, \ldots, n$. Note,

$$
b_{i j}=a_{i j}-m_{i 1} a_{1 j}=a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j} .
$$

Using symmetry of A,

$$
b_{j i}=a_{j i}-\frac{a_{j 1}}{a_{11}} a_{1 i}=a_{i j}-\frac{a_{1 j}}{a_{11}} a_{i 1}=a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}=b_{i j} .
$$

1.7.39: Suppose A is nonsingular and A has $L U$ factorization matrices L and U. Partition

$$
\left[\begin{array}{ll}
A_{k} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=A=L U=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right],
$$

where A_{k} is the k th leading principal submatrix of A. Then $A_{k}=L_{11} U_{11}+L_{12} U_{21}$. However, L is lower triangular implies $L_{12}=0$, so $A_{k}=L_{11} U_{11}$. Then $\operatorname{det} A_{k}=\operatorname{det} L_{11} \operatorname{det} U_{11}$. But $\operatorname{det} L_{11}=1$, since L is lower triangular with 1 's on the diagonal implies L_{11} is too. Also $\operatorname{det} U_{11}=\prod_{i=1}^{k} u_{i i} \neq 0$, otherwise $\operatorname{det} U=\prod_{i=1}^{n} u_{i i}=0$ and $\operatorname{det} A=\operatorname{det} L \operatorname{det} U=0$, making A singular. Thus, $\operatorname{det} A_{k}=\operatorname{det} U_{11} \neq 0$ and A_{k} is nonsingular.

Programming:

(a) See "hw6afn.m".
(b) For $N=1$, we get $s_{1}=1$, with 24 flops; for $N=10$, we get $s_{10}=5.56831805483414$, with 240 flops; for $N=100$, we get $s_{100}=5.28824561127089$, with 2400 flops.

