Math 170A Final

December 13, 2017

- Please put your name, ID number, and sign and date.
- There are 8 problems worth a total of 200 points.
- You must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Seat Number: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 25$
5	

Problem	Score
6	$/ 25$
7	$/ 25$
8	$/ 25$
Total	

1. (25 pts) Given the following start for a Matlab function:
function $[\mathrm{x}]=\operatorname{GaussSeidel}(\mathrm{n}, \mathrm{A}, \mathrm{b}, \mathrm{y}, \mathrm{N})$
that inputs

- dimension n;
- $n \times n$ matrix A;
- $n \times 1$ vector's b and y;
- number of iterations N;
complete the function so that it outputs Gauss-Seidel's approximation $\vec{x}^{(N)}$, when starting with initial guess $\vec{x}^{(0)}=y$. Do not use Matlab's in-built matrix inverse or backslash; or constant-vector, vector-vector, matrix-vector, matrix-matrix multiplications or additions.
Remember, Gauss-Seidel: for $i=1, \ldots, n$,

$$
x_{i}^{(k+1)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right) / a_{i i} .
$$

2. (25 pts) Use the inner-product form of the Cholesky method to find the Cholesky factor R of

$$
A=\left[\begin{array}{cccc}
16 & 4 & 8 & 8 \\
4 & 10 & 8 & 4 \\
8 & 8 & 12 & 10 \\
8 & 4 & 10 & 12
\end{array}\right]
$$

You do not have to simplify r_{44}.
Remember, R is the Cholesky factor of A means $r_{i j}=0$ for $i>j$ and $r_{i i}>0$ and $A=R^{T} R$. Also, remember inner-product formulation formulas:

$$
r_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} r_{k i}^{2}}, \quad r_{i j}=\left(a_{i j}-\sum_{k=1}^{i-1} r_{k i} r_{k j}\right) / r_{i i}
$$

3. (25 pts) Let A be an $n \times n$ lower triangular matrix. Furthermore, suppose $n>3$, and $a_{i j}=0$ for $i>j+3$. Count exactly the number of additions/subtractions and the number of multiplications/divisions needed to solve $A \vec{x}=\vec{b}$ by forward substitution. You must take advantage of the banded structure of A and achieve efficient counts.

Remember: forward substitution

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}\right) / a_{i i},
$$

and

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

4. (25 pts) Consider the 2×2 linear system

$$
\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

where $a_{11}, a_{22}, b_{1}, b_{2}$ are nonzero real numbers. Let $\hat{x}=\left[\hat{x}_{1}, \hat{x}_{2}\right]^{T}$ denote the result of forward substitution on this linear system, performed in an s-digit rounding machine with unit roundoff error $0 \leq u<1$. Show \hat{x} is the solution of a linear system of the form

$$
\left[\begin{array}{cc}
c_{11} & 0 \\
0 & c_{22}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

and that $\left|c_{i i}-a_{i i}\right| \leq\left|a_{i i}\right|\left(3 u+\mathcal{O}\left(u^{2}\right)\right)$, for $i=1,2$.
Remember: unit roundoff error u satisfies $\frac{|z-f l(z)|}{|z|} \leq u$.
Also, remember: for $|z|<1, \frac{1}{1-z}=\sum_{k=0}^{\infty} z^{k}$.
5. (25 pts) Prove SOR, applied to $A \vec{x}=\vec{b}$, where A has nonzero diagonal elements, will not converge (for every initial guess) when $\omega \geq 2$ or $\omega \leq 0$.
Remember, SOR:

$$
\vec{x}^{(k+1)}=\left(\frac{1}{\omega} D-E\right)^{-1}\left[\left(\frac{1-\omega}{\omega} D+F\right) \vec{x}^{(k)}+\vec{b}\right]
$$

where $A=D-E-F$, and D is the diagonal, $-E$ the strictly lower triangular, and $-F$ the strictly upper triangular portions of A.

Also, remember: $\operatorname{det}(B)=\prod_{k=1}^{n} \lambda_{k}$, where λ_{k}, for $k=1, \ldots, n$, are the eigenvalues of the $n \times n$ matrix B.
6. (25 pts) Performing operations as if in a 2-digit rounding machine, apply the Power method to the matrix

$$
A=\left[\begin{array}{cc}
-68 & -46 \\
118 & -32
\end{array}\right]
$$

using initial guess $\vec{q}^{(0)}$ a vector of all ones, to calculate s_{2}.
Remember Power method iterations: $\vec{q}^{(k+1)}=\frac{A \vec{q}^{(k)}}{s_{k+1}}$, where $s_{k+1}=\left(A \vec{q}^{(k)}\right)_{j}$ such that $\left|\left(A \vec{q}^{(k)}\right)_{j}\right|=\max _{1 \leq i \leq n}\left|\left(A \vec{q}^{(k)}\right)_{i}\right|$.
7. (25 pts) Given the linear system $A \vec{x}=\vec{b}$, with A nonsingular and $\vec{b} \neq 0$, and the perturbed linear system $(A+\delta A) \vec{x}=\vec{b}$, with

$$
\frac{\|\delta A\|}{\|A\|}<\frac{1}{\kappa(A)}
$$

where $\|\cdot\|$ is an induced norm, prove

$$
\frac{\|\overrightarrow{\delta x}\|}{\|\vec{x}\|} \leq \frac{\kappa(A) \frac{\|\delta A\|}{\|A\|}}{1-\kappa(A) \frac{\|\delta A\|}{\|A\|}}
$$

Remember, induced norm:

$$
\|A\|=\max _{\vec{y} \neq 0} \frac{\|A \vec{y}\|}{\|\vec{y}\|}
$$

and condition number: $\kappa(A)=\left\|A\left|\left\|\mid A^{-1}\right\|\right.\right.$.
8. Use Gaussian elimination with complete pivoting on

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & 2 & -4 \\
1 & 1 & 2
\end{array}\right]
$$

to find permutation matrices P, Q, upper triangular U, and lower triangular L with 1 's on the diagonal, satisfying $P A Q=L U$.
Remember: permutation matrices P satisfy $P^{-1}=P^{T}$.

