Math 170A Final
March 21, 2014

- Please put your name, ID number, and sign and date.
- There are 8 problems worth a total of 200 points.
- **You must show your work to receive credit.**

Print Name: ________________________________

Student ID: ________________________________

Signature and Date: _________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/25</td>
</tr>
<tr>
<td>2</td>
<td>/25</td>
</tr>
<tr>
<td>3</td>
<td>/25</td>
</tr>
<tr>
<td>4</td>
<td>/25</td>
</tr>
<tr>
<td>5</td>
<td>/25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>/25</td>
</tr>
<tr>
<td>7</td>
<td>/25</td>
</tr>
<tr>
<td>8</td>
<td>/25</td>
</tr>
<tr>
<td>Total</td>
<td>/200</td>
</tr>
</tbody>
</table>
1. (25 pts) Given the following header for a Matlab function:

 function [B] = LUfactorization(A,n)

 complete the function so that it outputs the LU factorization (no pivoting) of the $n \times n$ matrix A in the augmented $n \times n$ matrix B. Use only basic programming (do not use Matlab’s in-built scalar-vector multiplication, vector-vector addition, or lu function).
2. (25 pts) Write out (but do not solve) the matrix A and vectors \vec{x} and \vec{b} of the linear system of equations $A\vec{x} = \vec{b}$ involved in solving

$$-u''(t) + 2u'(t) + u(t) = \frac{5t}{4}$$

in the interval $[1, 3]$, with boundary conditions $u(1) = 1$, $u(3) = -1$, when subdividing the interval into $m = 5$ equal subintervals. Remember:

$$u''(t) \approx \frac{u(t + h) - 2u(t) + u(t - h)}{h^2}, \quad u'(t) \approx \frac{u(t + h) - u(t - h)}{2h}.$$
3. (25 pts) Consider an \(m \times m \) network of nodes (see the following figure when \(m = 5 \)) with one equation, one unknown at each node:

Suppose the \(i \)th equation is linear and involves only the unknowns associated with the \(i \)th node and the nodes directly connected to it. (for example, the figure’s 13th equation involves \(x_7, x_{12}, x_{13}, x_{14}, x_{19} \)). Find the bandwidth of the matrix in terms of \(m \) (for general \(m \), not just \(m = 5 \)). Be sure to show your work.
4. (25 pts) Consider the linear system $A\vec{x} = \vec{b}$, where A is an $n \times n$ matrix. Suppose A is sparse, with exactly m_i number of nonzero elements in row i. Let $m = \sum_{i=1}^{n} m_i$. Count the number of flops, in terms of m, involved in one step of Gauss-Seidel, when taking advantage of the sparseness. Remember, Gauss-Seidel going from step k to $k + 1$ uses, for $i = 1, 2, \ldots, n$,

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k)}}{a_{ii}}.$$
5. (25 pts) Find the $PA = LU$ factorization, using Gaussian elimination with row partial pivoting, of the matrix

$$A = \begin{bmatrix} 1 & 2 & 6 \\ -4 & 2 & 2 \\ -2 & 4 & 3 \end{bmatrix}.$$

Make sure you write out the P, L, and U matrices.
6. (25 pts) Let \(\vec{x} \) be the solution of the linear system \(A\vec{x} = \vec{b} \) and consider the perturbed linear system \((A + \delta A)(\vec{x} + \vec{\delta x}) = \vec{b} \). Suppose \(\delta A \) satisfies

\[
\frac{||\delta A||}{||A||} < \frac{1}{\kappa(A)},
\]

where \(||\cdot|| \) is an induced matrix norm. Derive an upper bound on \(||\vec{\delta x}||/||\vec{x}|| \) in terms of \(\kappa(A) \) and \(||\delta A||/||A|| \) and, in addition, label the step where you used the fact that \(||\delta A||/||A|| < 1/\kappa(A) \).
7. Consider an s-digit rounding machine with unit roundoff error $u < 1$. Now consider the 2×2 linear system
\[
\begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},
\]
where the a_{ij}'s and b_i's are already nonzero machine numbers. Let \hat{x} denote the result of back substitution, performed in the machine, on this linear system. Show \hat{x} is the solution of a linear system of the form
\[
\begin{bmatrix} c_{11} & c_{12} \\ 0 & c_{22} \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},
\]
Show, furthermore, that $|a_{12} - c_{12}| \leq u|a_{12}|.$
8. Find just the R matrix of the QR factorization for

$$A = \begin{bmatrix} 3 & 5 \\ 4 & -10 \\ 0 & -5 \end{bmatrix}.$$