Homework #2

- Textbook: 1.4.15, 1.4.21, 1.4.23, 1.4.54, 1.4.56, 1.4.62, 1.4.68.

- Programming:

1. Write a function in Matlab that takes as input the number n, the size of matrices and vectors; m, the number of nonzero elements of a sparse matrix; and the sparse matrix whose nonzeros are given in m-component column vectors r, c, and v: the r_k row, c_k column entry of the matrix is nonzero with value v_k, for $k = 1, \ldots, m$. Finish the program in the following way:

 (a) Have the function output the actual $n \times n$ matrix A represented. Write out or print out your function.

 (b) Have the function accept also the input of x, an n-component vector, and, working directly with the r, c, and v, output the matrix-vector multiplication between the sparse matrix and the vector x, and the number of flops involved. Write out or print out your function.

 (c) Assuming the sparse matrix is lower triangular and c is in non-decreasing order, have the function accept also the input of b, an n-component vector, and, working directly with the r, c, and v, output column-oriented forward substitution solving for $A^{-1}b$, and the number of flops involved. Write out or print out your function.