Homework #2

- Textbook: 1.1.20, 1.1.25, 1.4.15, 1.4.19, 1.4.21, 1.4.22, 1.4.23, 1.4.35.
- Programming:

1. Let A be a sparse matrix. We store A as a coordinate list, a sparse matrix format, involving vectors r, c of integers and v of real numbers, in the following way: for each nonzero entry in A, we assign a unique integer k and have (r_k, c_k) record the row and column position of the nonzero entry, and v_k record the value of the nonzero entry. Thus, instead of inputing A, we input

- dimension n;
- number of nonzero elements m;
- column vectors r, c, v of m components.

Using basic programming (for loops, while loops, and if statements):

(a) Write a function that inputs the n, m, r, c, v and outputs the actual $n \times n$ matrix A being represented by the sparse matrix format. Print out or write out this function.

(b) Write a function that inputs the n, m, r, c, v and additionally a vector y of n components, performs Ay using only the sparse matrix format (do not generate A), and outputs the number of flops used. Print out or write out this function.

(c) Write a function that inputs the n, m, r, c, v and additionally a vector b of n components. Assume, in the input, the sparse matrix A being represented is lower triangular and c is in non-decreasing order. Have the function perform column oriented forward substitution solving $Ax = b$ using only the sparse matrix format (do not generate A), and output the number of flops used. Print out or write out this function.

(d) Apply your three functions to the case $n = 8$, $m = 16$, and

$$
\begin{align*}
r &= \begin{bmatrix} 1, 8, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8 \end{bmatrix}^T, \\
c &= \begin{bmatrix} 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 \end{bmatrix}^T, \\
v &= \begin{bmatrix} 2, -1, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2 \end{bmatrix}^T \\
y &= \begin{bmatrix} 1, 2, 3, 4, 5, 6, 7, 8 \end{bmatrix}^T, \\
b &= \begin{bmatrix} 1, 2, 3, 4, 5, 6, 7, 8 \end{bmatrix}^T.
\end{align*}
$$

Print out or write out the results of each function.