Homework #4

• Textbook:
 – Due: 8.1.12, 8.2.4, 8.2.12, 8.2.18, 8.2.24
 – Not due: 8.1.14, 8.2.27, 8.2.28

• Programming:

 1. (a) Write a function that takes a input
 – dimension n and number of steps N;
 – $n \times n$ matrix A;
 – $n \times 1$ vectors b and x_0;
 uses Jacobi method, solving $Ax = b$, to calculate x_N from initial guess x_0, and outputs the number of flops used. Write out or print out your function and turn it in.

 (b) Let $A = (a_{ij})$, where
 $$a_{ij} = \begin{cases}
 1, & \text{if } i \neq j \\
 n, & \text{if } i = j
 \end{cases}$$
 and let b be the vector of all 1’s and x_0 the vector of all 0’s. Run your function for the cases $n = 10, N = 10$ and $n = 100, N = 10$ and $n = 200, N = 10$, and write out or print out your output.

 2. (Not due)

 (a) Using the coordinate list sparse matrix format, write a function that inputs
 – number of steps N;
 – n, m, r, c, v of a sparse matrix A, with r in non-decreasing order;
 – $n \times 1$ vectors b and x_0;
 uses Jacobi method, solving $Ax = b$, to calculate x_N from initial guess x_0, and outputs the number of flops used. Write out or print out your function and turn it in.

 (b) Let A be the tridiagonal matrix with 2’s on the main diagonal and -1’s in the upper and lower diagonals, and let b be the vector of all 1’s, and x_0 the vector of all 0’s. Run your function for the cases $n = 5, N = 10$ and $n = 10, N = 10$ and $n = 20, N = 10$, and write out or print out your output.