Homework #4

- Textbook: 2.1.17, 2.1.30, 2.1.31, 2.1.32, 2.1.33, 8.3.10, 8.3.14 (refer to Table 8.5), 8.3.19
 (note: \(\omega > 0 \))

- Programming:

 1. (a) Write a function that takes as input
 - dimension \(n \);
 - \(n \times n \) matrix \(A \);
 - calculates the infinity norm of \(A \) using the formula
 \[
 \|A\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|
 \]
 and outputs the result. Write out or print out your function and turn it in.

 (b) Let \(A = \) the tridiagonal matrix with \(p \)'s for elements on the main diagonal and \(q \)'s for elements on the lower diagonal and \(r \)'s for elements on the upper diagonal. For \(n = 100 \) and \((p, q, r) = (2, -1, -1) \) and \((4, 2, 1) \) and \((-10, 3, -5) \), have Matlab calculate \(A^{-1} \) using the command: \text{inv}(A), \text{ and write out or print out the results of your function on } A^{-1}.\)