Math 170A Midterm 1

October 30, 2017

- Please put your name, ID number, and sign and date.
- There are 4 problems worth a total of 100 points.
- You must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 100$
Total	

1. (25 pts) Let A be an $n \times n$ symmetric, positive definite, tridiagonal matrix. We store and work with A as two vectors: an $n \times 1$ vector y representing the main diagonal and an $(n-1) \times 1$ vector w representing the upper diagonal. Given the following start for a Matlab function:

$$
\text { function }[\mathrm{v}, \mathrm{z}]=\operatorname{getCholeskyFactor}(\mathrm{y}, \mathrm{w}, \mathrm{n})
$$

complete the function so that it uses the inner product formulation to compute and output the Cholesky factor's main diagonal vector v and upper diagonal vector z. Use only basic programming and be somewhat efficient in flop counts and comparison (number of "if" statements) counts.
Remember, R is the Cholesky factor of A means $r_{i j}=0$ for $i>j$ and $r_{i i}>0$ and $A=R^{T} R$. Also, remember inner product formulation formulas:

$$
r_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} r_{k i}^{2}}, \quad r_{i j}=\left(a_{i j}-\sum_{k=1}^{i-1} r_{k i} r_{k j}\right) / r_{i i}
$$

2. (25 pts) Consider the electrical circuit below, with an 8 V battery and resistors each with resistances of 2Ω. Write down a linear system of equations in matrix form, $A \vec{x}=\vec{b}$, for the unknown nodal voltages, but do not solve.
Remember Kirchhoff's current law: the sum of currents away from a node must be zero; and Ohm's law: voltage drop is equal to current times resistance.

3. (25 pts) Let

$$
R=\left[\begin{array}{ccc}
3 & -1 & 4 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

be the Cholesky factor of a symmetric, positive definite matrix A. Solve $A \vec{x}=\vec{b}$, when $\vec{b}=[6,-6,4]^{T}$, using column-oriented forward substitution and row-oriented back substitution.
Remember row-oriented back substitution: $x_{i}=\left(b_{i}-\sum_{i=i+1}^{n} g_{i j} x_{j}\right) / g_{i i}$.
4. (25 pts) Let $A=\left(a_{i j}\right)$ be a 20×20 symmetric, positive definite matrix, and suppose $a_{i, 15}=0$ for all $1 \leq i \leq 14$. If $R=\left(r_{i j}\right)$ is the Cholesky factor of A, prove $r_{i, 15}=0$ for all $1 \leq i \leq 14$.

