Math 170A Midterm

February 5, 2014

- Please put your name, ID number, and sign and date.
- There are 4 problems worth a total of 100 points.
- **You must show your work to receive credit.**

Print Name: __

Student ID: __

Signature and Date: ___

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/25</td>
</tr>
<tr>
<td>2</td>
<td>/25</td>
</tr>
<tr>
<td>3</td>
<td>/25</td>
</tr>
<tr>
<td>4</td>
<td>/25</td>
</tr>
<tr>
<td>Total</td>
<td>/100</td>
</tr>
</tbody>
</table>
1. (25 pts) Given the following header for a Matlab function:

 function [x] = ColumnOrientedBackSub(A,b,n)

 Complete the function so that it performs column-oriented back substitution to solve the linear system $Ax = b$ given A an $n \times n$, upper triangular matrix. Use only basic programming (do not use Matlab’s in-built vector-vector addition, matrix-vector multiplication, matrix-matrix multiplication, or linear system solver).
2. (25 pts) Let $A = (a_{ij})$ be a 10×10, positive definite matrix with Cholesky factor $R = (r_{ij})$. Suppose that $a_{1,1} = 16$, $a_{1,2} = -8$, $a_{1,7} = 12$, $a_{2,2} = 13$, and $a_{2,7} = -21$. Solve for the value of $r_{2,7}$.
3. (25 pts) Consider an \(m \times m \) network of nodes, such as in the following figure for \(m = 5 \), with one equation, one unknown at each node:

Suppose the \(i \)th equation is linear and involves only the unknowns associated with the \(i \)th node and the nodes in the immediate up, down, left, right, and diagonal directions (for example, the figure’s 13th equation involves \(x_7, x_8, x_9, x_{12}, x_{13}, x_{14}, x_{17}, x_{18}, x_{19} \)). Answer the following questions for general \(m \):

(a) Count, exactly, the maximum number of nonzeros possible, in terms of \(m \), in the system’s matrix.

(b) Find the bandwidth of the matrix in terms of \(m \).
4. (25 pts) Suppose A is an $n \times n$, positive definite matrix and suppose we partition it into $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, where A_{11} is of size $k \times k$, for $0 < k < n$. Prove A_{11} is also positive definite.