Midterm \#1

1. For upper triangular and back substitution:
```
function \([\mathrm{x}]=\operatorname{BackSubTridiag}(\mathrm{n}, \mathrm{v}, \mathrm{w}, \mathrm{b})\)
    \(\mathrm{x}(\mathrm{n})=\mathrm{b}(\mathrm{n}) / \mathrm{v}(\mathrm{n}) ;\)
    for \(\mathrm{i}=\mathrm{n}-1:-1: 1\)
        \(\mathrm{x}(\mathrm{i})=(\mathrm{b}(\mathrm{i})-\mathrm{w}(\mathrm{i}) * \mathrm{x}(\mathrm{i}+1)) / \mathrm{v}(\mathrm{i}) ;\)
    end
end
```

For lower triangular and forward substitution:

```
function \([\mathrm{x}]=\) ForwardSubTridiag(n,v,w,b)
    \(\mathrm{x}(1)=\mathrm{b}(1) / \mathrm{v}(1) ;\)
        for \(\mathrm{i}=2: \mathrm{n}\)
        \(\mathrm{x}(\mathrm{i})=\left(\mathrm{b}(\mathrm{i})-\mathrm{w}(\mathrm{i}-1)^{*} \mathrm{x}(\mathrm{i}-1)\right) / \mathrm{v}(\mathrm{i}) ;\)
```

 end
 end
2. Let the matrix be $n \times n$. Let \hat{i} be the row such that $a_{\hat{i}, j}$, for $j=\hat{i}, \ldots, n$, is nonzero. Similarly, let \hat{j} be the column such that $a_{i, \hat{j}}$, for $i=1, \ldots, \hat{j}$, is nonzero.
The number of flops is $3 n+2 \hat{j}-2 \hat{i}-4$.
3. Let \hat{i}, \hat{j} be the indices of interest: we want to find $a_{\hat{i}, \hat{j}}$.

- Yellow: $a_{\hat{i}-1, \hat{i}-1}=4, a_{\hat{i}-1, \hat{i}}=-2, a_{\hat{i}-1, \hat{j}}=1$ and $a_{\hat{i}, \hat{i}}=3, a_{\hat{i}, \hat{j}}=4 / 3$.
- Pink: $a_{\hat{i}-1, \hat{i}-1}=5, a_{\hat{i}-1, \hat{i}}=1, a_{\hat{i}-1, \hat{j}}=3$ and $a_{\hat{i}, \hat{i}}=4, a_{\hat{i}, \hat{j}}=-5 / 4$.
- Green: $a_{\hat{i}-1, \hat{i}-1}=4, a_{\hat{i}-1, \hat{i}}=1, a_{\hat{i}-1, \hat{j}}=-2$ and $a_{\hat{i}, \hat{i}}=3, a_{\hat{i}, \hat{j}}=-2 / 3$.
- Blue: $a_{\hat{i}-1, \hat{i}-1}=5, a_{\hat{i}-1, \hat{i}}=-2, a_{\hat{i}-1, \hat{j}}=-1$ and $a_{\hat{i}, \hat{i}}=4, a_{\hat{i}, \hat{j}}=3 / 4$.

4. See HW solutions.
