Math 170A Midterm 2

November 20, 2017

- Please put your name, ID number, and sign and date.
- There are 4 problems worth a total of 100 points.
- You must show your work to receive credit.

Print Name: \qquad

Student ID: \qquad

Seat Number: \qquad

Signature and Date: \qquad

Problem	Score
1	$/ 25$
2	$/ 25$
3	$/ 25$
4	$/ 100$
Total	

1. (25 pts) Given the following start for a Matlab function:
function $[\mathrm{s}]=$ PowerMethod $(\mathrm{n}, \mathrm{A}, \mathrm{b}, \mathrm{N})$
that inputs

- dimension n;
- $n \times n$ matrix A and $n \times 1$ vector b;
- number of steps N;
complete the function so that it performs N steps of the Power method, using initial guess, $\vec{q}^{(0)}$, a vector of all ones, and outputs the approximate eigenvalue s_{N}. Do not use Matlab's in-built constant-vector, vector-vector, or matrix-vector multiplications.
Remember Power method iterations: $\vec{q}^{(k+1)}=\frac{A \vec{q}^{(k)}}{s_{k+1}}$, where $s_{k+1}=\left(A \vec{q}^{(k)}\right)_{j}$ such that $\left|\left(A \vec{q}^{(k)}\right)_{j}\right|=\max _{1 \leq i \leq n}\left|\left(A \vec{q}^{(k)}\right)_{i}\right|$.

2. (25 pts) Find the L and U matrices for the $\mathbf{L U}$ factorization of

$$
A=\left[\begin{array}{ccc}
2 & -1 & 6 \\
1 & 1 & 0 \\
-4 & -2 & 2
\end{array}\right]
$$

Remember multiplier: $m_{i j}=\frac{a_{i j}}{a_{j j}}$.
3. (25 pts) Consider

$$
A=\left[\begin{array}{cc}
-1 & c \\
c & 2
\end{array}\right]
$$

Find all c such that Gauss-Seidel on $A \vec{x}=\vec{b}$ will converge for any initial guess.
Remember Gauss-Seidel iterations: $\vec{x}^{(k+1)}=(D-E)^{-1}\left(F \vec{x}^{(k)}+\vec{b}\right)$, where $A=D-$ $E-F$, and D is the diagonal, $-E$ the strictly lower triangular, and $-F$ the strictly upper triangular portions of A.
Also,

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

4. (25 pts) Given n, define the norm $\|\cdot\|$ by

$$
\|\vec{x}\|=2 \max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

Find $C_{1}, C_{2}, C_{3}>0$ such that

$$
C_{1}\|\vec{x}\|_{1} \leq\|\vec{x}\| \leq C_{2}\|\vec{x}\|_{1},
$$

and

$$
\|A\| \leq C_{3}\|A\|_{1}
$$

for all $n \times 1$ vectors \vec{x} and $n \times n$ matrices A.
Remember:

$$
\|\vec{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|, \quad\|A\|=\max _{\vec{x} \neq 0} \frac{\|A \vec{x}\|}{\|\vec{x}\|}, \quad\|A\|_{1}=\max _{\vec{x} \neq 0} \frac{\|A \vec{x}\|_{1}}{\|\vec{x}\|_{1}}
$$

