Homework #2

1. Let \(g(x) = 1/x + x/2 \) and consider the interval \([1.4, 1.45]\).

 (a) Show \(g(x) \in [1.4, 1.45] \) for \(x \in [1.4, 1.45] \) by finding the maximum value, \(M \), and minimum value, \(m \), of \(g \) in the interval and showing \([m, M] \subseteq [1.4, 1.45]\).

 (b) Find \(0 \leq \lambda < 1 \) such that \(|g'(x)| \leq \lambda \) for all \(x \in [1.4, 1.45] \) by finding the maximum value of \(|g'(x)| \).

 (c) Use the \(\lambda \) you just found to estimate the \(n \) such that \(p_n \) of fixed point iterations will have absolute error \(\leq 10^{-8} \) when \(p_0 = 1.425 \).

 (d) Compute \(p_3 \) of the fixed point iteration using \(p_0 = 1.425 \) and find the absolute error of this approximation (exact solution is \(\sqrt{2} \)).

2. Let \(p \) be a fixed point of \(g \). Show if \(|g'(p)| < 1 \), then fixed point iterations will converge if \(p_0 \) is close enough to \(p \) (use continuity of \(g' \) to show there is an interval \([p - \delta, p + \delta]\) where \(|g'(x)| \leq \lambda < 1 \), and then try to use the theorem on convergence of fixed point iterations).

3. Show if there exists a \(\delta > 0 \) such that \(|g'(x)| \geq \lambda > 1 \) in \([p - \delta, p + \delta]\) then a fixed point iterations sequence of approximations \(\{p_n\}_{n=0}^{\infty} \), with \(p_n \neq p \) for all \(n \), will not converge to \(p \).

4. Consider the problem of finding the point on the graph of \(y = x^3 \) closest to the point \((3, -1)\).

 (a) Write down the expression for \(d(x) = \) the square of the distance from \((x, x^3)\) to \((3, -1)\).

 (b) Minimize \(d(x) \) by finding the, in this case, unique critical point: approximating the solution of \(f(x) = d'(x) = 0 \) using Newton’s method to generate \(p_2 \) when \(p_0 = 2 \).

5. Consider the equation \(xy^2 + \tan y = x \) that implicitly defines \(y \) as a function of \(x \): \(y = y(x) \). Approximate \(y(1) \) with \(y_2 \) generated by 2 iterations of Newton’s method using initial guess \(y_0 = 1 \).

6. Let \(f(x) = \begin{cases} \sqrt{x}, & \text{if } x \geq 0 \\ -\sqrt{-x}, & \text{if } x < 0 \end{cases} \)

 (a) Generate Newton’s method’s \(p_1, p_2, p_3 \) in terms of \(p_0 > 0 \). Then guess the value of \(p_n \) for \(n \) even and \(n \) odd.

 (b) Will Newton’s method converge for any \(p_0 \neq 0 \)? Why does this not violate the theorem on the convergence of Newton’s method since the initial guess can be arbitrarily close to the root?
7. Suppose $f(x)$ is twice continuously differentiable and suppose $f''(x) > 0$ for all x. Furthermore, let p be a root of $f(x)$ and suppose $f'(p) > 0$.

(a) Prove Newton’s method’s sequence of approximations p_n satisfy $p_n > p$, when $p_0 > p$.

(b) Prove Newton’s method’s sequence of approximations p_n satisfy $p_{n+1} < p_n$ when $p_0 > p$.

8. (Matlab) First write two Matlab functions that both take as input x and output expressions for $f(x)$ and $f'(x)$ (calculate expression for $f'(x)$ by hand). Then write a Matlab function that inputs

- initial guess p_0;
- number of iterations N;

and outputs the p_N of Newton’s method. Make sure you call the functions you have when you need values of $f(x)$ or $f'(x)$.

(a) Turn in your programs for Newton’s method on $f(x) = x^2 - 8$.

(b) Write down your results when $p_0 = 2$ and $N = 5, 10, 20$ and when $p_0 = 3$ and $N = 5, 10, 20$.