Homework #4

1. Consider the fixed point function $G = (g_1, g_2)$, where

\[g_1(x_1, x_2) = \frac{x_1^2 + x_2^2 + 8}{10}, \]
\[g_2(x_1, x_2) = \frac{x_1 x_2^2 + x_1 + 8}{10}. \]

Let $D = \{(x_1, x_2)^t | 0 \leq x_1, x_2 \leq 1.5\}$.

(a) Show $(g_1(x_1, x_2), g_2(x_1, x_2))^t \in D$ for all $(x_1, x_2)^t \in D$.

(b) (not due) Find $K < 1$ such that

\[\left| \frac{\partial g_i(x_1, x_2)}{\partial x_j} \right| \leq \frac{K}{2}, \]

for all $(x_1, x_2)^t \in D$ and $i, j \in \{1, 2\}$.

(c) (not due) Perform three iterations of fixed point iterations on G with initial guess $(0.9, 0.9)^t$.

2. Consider the nonlinear system

\[\begin{cases} x_1(1 - x_1) + 4x_2 - 12 = 0, \\ (x_1 - 2)^2 + (2x_2 - 3)^2 - 25 = 0. \end{cases} \]

Perform three iterations of Newton’s method with initial guess $(0, 0)^t$ to find an approximate solution to the nonlinear system.

3. For each part, find the interpolating polynomial for the data points

$(-1, 2), (1, 3), (2, -2)$.

by writing down a linear system involving $p(-1) = 2, p(1) = 3, p(2) = -2$ and solving it (using Matlab or any method) for the unknown coefficients a, b, c:

(a) $p(x) = ax^2 + bx + c$.

(b) $p(x) = a\frac{(x-1)(x-2)}{6} + b\frac{(x+1)(x-2)}{-2} + c\frac{(x+1)(x-1)}{3}$ (Lagrange form).

(c) (not due) $p(x) = a + b(x + 1) + c(x + 1)(x - 1)$ (Newton form).

(d) (not due) Simplify each and show they are all the same polynomial.

4. Consider the data points $(-2, -1), (0, 1), (-1, 3)$.

(a) Write down the Lagrange form for the least degree polynomial $p_2(x)$ interpolating these data points.
(b) (not due) Find K, a, b, c such that $p_3(x) = p_2(x) + K(x - a)(x - b)(x - c)$ interpolates, in addition, the data point $(1, -1)$.

(c) (not due) Evaluate $p_3(-0.7)$ and $p'_3(-0.7)$.

5. (a) Given $n + 1$ data points with distinct nodes, prove there are an infinite number of different polynomials of degree exactly $n + 1$ interpolating these data points (Hint: add a data point).

(b) (not due) Write down two different polynomials of degree exactly 3 interpolating the data points

$$(1, 4), (2, -2), (3, 1).$$

6. (a) Find the Lagrange form of the Lagrange interpolating polynomial for the data points $(x_0 - h, f(x_0 - h)), (x_0, f(x_0)), (x_0 + h, f(x_0 + h))$ and call it $p_2(x)$.

(b) Simplify $p'_2(x_0)$ into the form $Af(x_0 + h) + Bf(x_0) + Cf(x_0 - h)$, for some A, B, C constants that depend on h.

(c) Do the same for $p''_2(x_0)$.

(d) (not due) Do the same for $\int_{x_0-h}^{x_0+h} p_2(x) \, dx$.

7. Prove the Lagrange interpolating polynomial, interpolating $n + 1$ data points with distinct nodes, is also the polynomial of least degree that interpolates those data points.

8. (Matlab) Write a Matlab program that inputs

- integer m;
- two vectors of data points x and y, both with m components;
- location z.

Have this program use the Lagrange form for the Lagrange interpolating polynomial to output the polynomial’s value at z.

(a) Write out or print out your program.

(b) Apply your program to the case with data points $(x_i, f(x_i)), i = 0, \ldots, 20$, where the $f(x) = \frac{1}{1+25x^2}$, and x_i are equally spaced nodes satisfying

$$-1 = x_0 < x_1 < \ldots < x_{20} = 1,$$

and write out or print out your results for $z = 0.975$, along with the absolute error (exact is $f(z)$).

(c) Do the same with the same $f(x)$, but equally spaced nodes

$$-1 = x_0 < x_1 < \ldots < x_{40} = 1.$$