Math 170B Midterm 2
February 24, 2016

• Please put your name, ID number, and sign and date.
• There are 4 problems worth a total of 100 points.
• You must show your work to receive credit.

Print Name: ________________________________

Student ID: ________________________________

Signature and Date: _________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/25</td>
</tr>
<tr>
<td>2</td>
<td>/25</td>
</tr>
<tr>
<td>3</td>
<td>/25</td>
</tr>
<tr>
<td>4</td>
<td>/25</td>
</tr>
<tr>
<td>Total</td>
<td>/100</td>
</tr>
</tbody>
</table>
1. (25 pts) (Matlab) Write a Matlab program that takes as input:

 - m, the number of nodes;
 - x, a vector of nodes;
 - y, a vector of values at the nodes;
 - $yprime$, a vector of first derivative values at the nodes;

 and outputs the coefficient of x^{2m-1}, for the Hermite interpolation polynomial, using divided differences.
2. (25 pts) Let \(f(x) = e^{x-1} \). For a choice of \(n + 1 \) nodes, \(x_0, \ldots, x_n \in [-1, 1] \), let \(p(x) \) be the interpolation polynomial for the data points \((x_0, f(x_0)), \ldots, (x_n, f(x_n)) \). Find one example of \(n \), and node locations \(x_0, \ldots, x_n \), satisfying \(|f(x) - p(x)| \leq \frac{1}{1000} \) for all \(x \in [-1, 1] \). You must justify your answer.

Hint: Use Chebyshev polynomials, error bounds, and check \(n = 1, 2, 3, \ldots \) Remember:

\[
T_k(x) = \cos(k \cos^{-1}(x)), \quad T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)
\]

\[
T_k \left(\cos \left(\frac{(2j-1)x}{2k} \right) \right) = 0, \quad \max_{x \in [-1, 1]} |T_k(x)| = 1
\]

and for \(x \in [-1, 1] \), and for some \(\xi_x \in [-1, 1] \),

\[
f(x) - p(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}(x-x_0) \cdot \cdots \cdot (x-x_n).
\]
3. (25 pts) Let \(f(x) \) be a given function and suppose \(p_6(x) = x^3 - 5x^2 + 18 \) is the interpolation polynomial for the table of data:

\[
\begin{array}{c|ccccccc}
 x & -4 & -3 & -2 & -1 & 1 & 3 & 4 \\
 y & f(-4) & f(-3) & f(-2) & f(-1) & f(1) & f(3) & f(4)
\end{array}
\]

Let \(p_7(x) \) be the interpolation polynomial that adds the data point with node at \(x = 0 \) with value \(f(0) = 10 \). Evaluate \(p_7(2) \) and simplify it to be an integer.
4. (25 pts) Let \(F(x) = \frac{1}{3 - x} + \frac{x}{2} \). Prove fixed point iterations, \(x_{n+1} = F(x_n) \), will converge for all initial guesses in \(\left[\frac{1}{2}, \frac{3}{2} \right] \).

Remember: MVT says \(F(x) - F(y) = F'(\xi)(x - y) \) for some \(\xi \) between \(x, y \). Also, \(F \) is a contractive map in a closed set \(C \) if there exists \(\lambda < 1 \) such that \(|F(x) - F(y)| \leq \lambda |x - y| \) for all \(x, y \in C \).