Homework #2

1. Let $g(x) = 1/x + x/2$ and consider the interval $[1.4, 1.45]$.
 (a) Show $g(x) \in [1.4, 1.45]$ for $x \in [1.4, 1.45]$ by finding the maximum and minimum values of g in the interval.
 (b) Find $0 \leq k < 1$ such that $|g'(x)| \leq k$ for all $x \in [1.4, 1.45]$ by finding the maximum and minimum values of $g'(x)$ in the interval.
 (c) Use this k, along with error bounds, to estimate n such that p_n of fixed point iterations will have absolute error $\leq 10^{-4}$, when $p_0 = 1.425$. Do the same for absolute error $\leq 10^{-10}$.
 (d) Perform fixed point iterations with initial guess $p_0 = 1.425$ until $|p_k - p_{k-1}| \leq 10^{-4}$ is satisfied.

2. Suppose $g \in C^1[a,b]$ and there exists $0 \leq k < 1$ such that $g'(x) \leq k$ for all $x \in [a,b]$. Prove g has at most one fixed point in $[a,b]$.

3. Suppose g and g' are continuous functions.
 (a) Prove if there is a $0 < k < 1$ such that $|g'(x)| \leq k$ for all x, and if g has a fixed point, then fixed point iterations will converge for any starting guess.
 (b) Prove if $|g'(x)| \geq 1$ everywhere, then fixed point iterations will not converge to any fixed point when the starting guess is not itself a fixed point.

4. Consider the root-finding problem $x^2 - 3 = 0$.
 (a) Consider $x^2 + x - 3 = x$, obtained by adding x on both sides. Study the value of $|g'(\sqrt{3})|$ and comment on the convergence of fixed point iterations.
 (b) Find a different way of turning $x^2 - 3 = 0$ into a fixed point problem that gives a fixed point function $g(x)$ that satisfies $|g'(\sqrt{3})| < 1$. Comment on the convergence of fixed point iterations.

5. (a) Give a graphical description showing how fixed point iterations converge for the fixed point function $g(x) = x/2$.
 (b) Give a graphical description showing how fixed point iterations do not converge for the fixed point function $g(x) = 2x$.

6. (a) Starting with initial guess $p_0 = 1$, find approximations p_1, p_2, p_3 to the root of $f(x) = x^2 - 3$ using Newton’s method.
 (b) Give a graphical description of how Newton’s method arrives at these approximations.
7. (a) Consider
\[f(x) = \begin{cases} \sqrt{x}, & x \geq 0 \\ -\sqrt{-x}, & x < 0. \end{cases} \]
Starting with initial guess \(p_0 = a > 0 \), find 3 additional approximations to the root of \(f(x) \) using Newton’s method.

(b) Give a graphical description of how Newton’s method arrives at these approximations.

(c) Will Newton’s method converge to the exact root at 0 for any \(p_0 \neq 0 \)? Why does this not violate the theorem on convergence of Newton’s method?

8. (Matlab)

(a) Using the “cos” command in Matlab, write a Matlab function that inputs a number \(x \) and outputs the value \(\cos x \). Print out or write out the function.

(b) Write a Matlab function that inputs a starting guess \(p_0 \) and tolerance \(\epsilon \), performs fixed point iterations on the function of part (a), and outputs the number of iterations \(N \) and the final fixed point approximation \(p_N \) satisfying \(|p_N - p_{N-1}| \leq \epsilon \). Print out or write out the function.

(c) Run your function using \(p_0 = 1 \) and \(\epsilon = 10^{-2}, 10^{-5}, 10^{-10} \) and print out or write out the results.

9. (Math 274) Let \(g \in C^1[a,b] \).

(a) Suppose there exists \(k < 1 \) such that \(|g'(x)| \leq k \) for all \(x \in [a,b] \). If there is a fixed point \(p \) in \((a,b) \), prove there exists an interval \([c,d] \subseteq [a,b] \) such that \(g(x) \in [c,d] \) for all \(x \in [c,d] \).

(b) If there is a fixed point \(p \) in \((a,b) \), and if \(|g'(p)| < 1 \), explain why there exists an interval \([c,d] \subseteq [a,b] \) such that \(g(x) \in [c,d] \) for all \(x \in [c,d] \).