Project #4

1. Suppose the computational domain D is $[-1,1] \times [-1,1]$. Consider atoms at (x_j, y_j), for $j = 1, \ldots, 500$, where $h = 2\pi/500$, and $\theta_j = j \cdot h$, and $x_j = \pi/30 + 0.7 \cos \theta_j$ and $y_j = \sqrt{2}/5 + 0.4 \sin \theta_j$. Suppose the atom at (x_j, y_j) has charge q_j, where $q_j = x_j + 1$. Laying down a 101×101-size grid, with stepsize $2/100$ in each dimension, use the multipole method, with $p = 10$ term expansions and maximum level 5 (32×32 grid) or level 0 (choose one), to compute, at each grid point (x, y),

$$g(x, y) = -\sum_{j=1}^{500} q_j \log(\sqrt{(x - x_j)^2 + (y - y_j)^2}).$$

Plot your values of g over the grid and turn in the plot.