- Please put your name, ID number, and section number (or time) on your blue book.
- The exam is CLOSED BOOK.
- Calculators ARE allowed.
- You must show your work to receive credit.

1. (10 pts.) Evaluate $\int_{0}^{2} \sqrt{4-x^{2}} d x$ by interpreting it as an area.
2. (30 pts.) Evaluate the following integrals using the tools discussed in the text.

$$
\int(1-x) \sqrt{2 x-x^{2}} d x \quad \int_{0}^{2}|\sin \pi x| d x .
$$

You will receive NO CREDIT for using a calculator to find the indefinite integral and then verifying by differentiation.
3. (30 pts.) Differentiate the functions

$$
F(x)=\int_{1}^{x} \sqrt{1+u^{4}} d u \quad G(x)=\int_{x^{2}}^{1} \ln \left(1-t^{3}\right) d t .
$$

4. (30 pts.) Express the following as integrals. DO NOT EVALUATE the integrals. Sketches may be useful in obtaining partial credit if you make a mistake.
(a) The area bounded by the 3 curves

$$
y=\sin (\pi x), \quad y=x^{2}-x \quad \text { and } \quad x=2
$$

(b) The volume of the solid obtained by rotating the region bounded by the curves $y^{2}=x$ and $x=2 y$ about the $y$-axis.

## END OF EXAM

