1. (60 pts.) Determine if each of the following series is convergent or divergent. You must give correct reasons for your answers to receive credit.

 (a) \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} + 3} \)
 (b) \(\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + 3} \)
 (c) \(\sum_{n=1}^{\infty} \frac{n + 2^n}{n^2} \)
 (d) \(\sum_{n=0}^{\infty} \tan n \)
 (e) \(\sum_{n=0}^{\infty} \frac{6^{2n-3}}{3^{3n+3}} \)
 (f) \(\sum_{n=0}^{\infty} \frac{3^{3n+3}}{6^{2n-3}} \)

2. (20 pts) Find the radius of convergence AND the interval of convergence of the power series \(\sum_{n=0}^{\infty} \frac{n^2(x + 3)^n}{2^n} \).

3. (20 pts.) Find the coefficients of \(x^{10} \) and \(x^{11} \) in the Taylor series for \((1 + x)e^{-2x^2} \) at \(a = 0 \). You may leave powers and factorials in your answer; for example, \(8!/311 \) is a perfectly good form for an answer—but it is not the answer.

 Hint: If you know the Taylor series for \(e^x \), you can do this problem without computing derivatives of \((1 + x)e^{-2x^2} \).