03/30/21
what, who, where, when and how

$$
\text { (Why - ) } 5 W_{r}
$$

What is "calculus of variations"?
who are main players? -many you \& me
where to find the minimizer of an extremal? problem dictates weak solutions
when to expect a minimizer ? F sufficient conditions how $t$ find it?

Find \& solve $O D E$ DE

Problems: Kepler planimetric problem Wine barrel - maximize volume
$\{$ Steiner problem:
Geomitin Mature

Trainstation
$1 / 3$
(A) Calculus of variation concerns functional involves derivatives \& integrals of functions

Brachistochrone:
1696 Johann Bernoulli
Find the path for the particle to travel in the
 shortest time undue tho gravity $\left\{\begin{array}{l}f(0)=h \\ f(a)=0\end{array}\right.$

Solving this is a presentation ~HW
Grades Do a presentation on one of

$$
\text { projects ( } 5 \text { total }
$$

or do a presentation on HW during the office hour $\rightarrow A$
I select the one with excellent solution to present in class $\longrightarrow A^{+}$
 a functional on $\varphi \quad \varphi \in \underline{W^{1.2}(\Omega)}$ makes Sense $\left.\quad \varphi\right|_{\partial \Omega}=f$ also makes sense if $\Omega$ is smooth
Cal culus of variation concerns how to find the minimizer

$$
\begin{aligned}
& \text { Assume } U \text { is a minimizer } \\
& H\left(\eta \in W _ { 0 } ^ { 1 . 2 } ( \Omega ) \quad \left\{\begin{array}{l}
\left.u+\eta, W^{1.2} / \Omega\right) \\
\left.\underbrace{u+\eta}\right|_{\partial \Omega}=u / \partial \Omega=f
\end{array}\right.\right. \\
& D(\varepsilon)=\int|\nabla u+\varepsilon \nabla \eta|^{2} \quad u \underset{\sim+\varepsilon \eta}{u} \\
& 0=D_{S}^{\prime}(0)=\underbrace{2} \underbrace{\langle D u D \eta\rangle}=-2 \underbrace{\Delta u \cdot \eta}_{n \in W_{0}(\Omega)}
\end{aligned}
$$

SD) cullet the list variation Hence $u$ satisfin $\left\{\begin{array}{l}\Delta u=0 \\ \left.u\right|_{\theta \Omega}=f\end{array} \quad\right.$ in $\Omega$

PDE people use this to study th PDE-
Euler - Lagrange equation
Lagrangian

$$
I(z)=\int_{U} \underbrace{L(D z, z, x)}_{z \omega, z+i \eta} \begin{array}{ll}
L: \mathbb{R}^{n} \times \mathbb{R} \times \Omega \\
\text { Vector } & L(p, z, x)
\end{array}
$$


$z+\varepsilon \eta \sim \delta I-$ cathar the 1 st variation

$$
\begin{aligned}
& (\eta) \in W_{0}^{\prime, 2}(U) \quad z \in W^{\prime 2} \\
& \left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} I(z+\theta \eta)=\int_{U} L_{p_{j}} D_{j} \eta+L_{z} \eta \\
& =\int_{U}[-\underbrace{\left.D_{j} \cdot\left(L_{p_{j}}\right)+L_{z}\right] \cdot \eta} \\
& \text { If } \eta v \text {-valued } \quad L=\underset{m}{\operatorname{trotal}^{\prime}(p, \underset{=}{Z}, x) \quad \mathbb{R}_{=}^{m+n} \times \mathbb{R}^{m} \times \underline{U}}
\end{aligned}
$$

$$
\begin{aligned}
& =\int-D_{j}\left(L_{p_{j}^{k}}^{n}\right) \eta^{k}+L_{z^{k}} \eta^{k} \\
& \left.z \rightarrow \begin{array}{c}
z+\varepsilon \eta \\
\left(z^{\prime}+\varepsilon \eta^{\prime}\right. \\
\vdots=1+y^{\prime}
\end{array}\right) \quad \int \sum_{k=1}^{\xi} \varphi^{k} \cdot \eta^{k}=0 \quad \forall \quad \eta_{1 \leqslant k s m}
\end{aligned}
$$

$$
\Rightarrow \quad-D_{j}\left(L_{p_{j}^{k}}^{k}\right)+L_{z^{h}}=0 \quad \forall 1 s k \leqslant m
$$

- Ind-variation \& ellipticity

Hadamard-Legendre Condition
Say $U$ is a minimizer

$$
\begin{aligned}
& \left.\Rightarrow \frac{d}{d \varepsilon}\right|_{\varepsilon=0} I(u+\varepsilon \eta)=0 \quad \& \frac{d \varepsilon^{2}}{\left.d\right|_{\varepsilon=0} ^{2} I(u+\Sigma \eta) \geqslant 0} \\
& \frac{d}{d \xi} I(u+\varepsilon \eta)=\int L_{p_{j}} D_{j} \eta+\left(L_{z} \eta\right. \\
& L=L(p, z x) \\
& \Rightarrow \quad L(u+\varepsilon \eta)=\left\langle\left(D_{j} \mu+\Sigma D_{j} \eta, u+\varepsilon \eta, x\right\rangle\right.
\end{aligned}
$$

We have a lot of freedom in chose $\eta$

Now we let

$$
\eta(x)=\underline{(\delta) p\left(\frac{x \cdot \xi}{\delta}\right)}
$$


$\rho(t+1)=\rho(t)$
$\left|p^{\prime}\right|^{2}=1$ are

necessary Condition for the amimizer.
In our discussion of

$$
\begin{aligned}
& \text { discussion of } \\
& -D_{j}\left(L_{p_{j}}(D u ; u, x)\right)+L_{z}=0
\end{aligned}
$$

Inler-Lagrange equation
We pose the restriction $L_{p_{i} p_{j}}\left\{_{i} \xi_{j} \geqslant \lambda|\xi|^{2}\right.$
So-called the eMipticity assumption
The similar result holds for systems ( $\left.\begin{array}{c}u \\ \text { valued vector } \\ \text { val }\end{array}\right)$
(B) Null Lagrangians \& Applications

$$
\left\{\begin{array}{l}
L(p, u, x) \text { ib callus Null }-L \text { if } \\
\varepsilon-L \text { equation holds } \forall u \quad\left(-\frac{\partial}{\partial x_{j}}\left(L_{p_{j}}\right)+L_{z}=0\right)
\end{array}\right.
$$

(E.9.) ext: $\Phi(4 . x)$ any function of $\mathbb{R}^{n} \times \mathbb{R}$ )

$$
\begin{aligned}
& \left.\underline{\underline{E}} \doteq \quad \frac{d \Phi}{d x}=\underline{\Phi}_{\underline{u}^{i}} u_{x}^{i}+\Phi_{x}\right\} \quad L(p u, x) \\
& =\underbrace{\Phi_{u^{i}} p^{i}+\Phi_{x}} \doteq \underbrace{\Phi_{u j}(u) P j^{j}+\Phi_{x}(u)}
\end{aligned}
$$

Now $\left.-\left(\Psi_{p_{i}}\right)_{x}+\underline{\underline{\psi}}_{i i}\right) \gtrsim$

$$
\begin{aligned}
& =-\left(\underline{\Phi}_{u^{i}}\right)_{x}+\frac{\Phi_{u^{i} u j} p^{j}+\Phi_{x u^{i}}}{} \\
& =-\left(\Phi_{u^{i} u^{j}} \frac{d u^{j}}{d x}+\Phi_{u^{i} x}^{u}\right)+\downarrow \\
& p j
\end{aligned}=0
$$

Ex 2

$$
\begin{aligned}
& \underline{L(p, u, x)}=\sum a^{i} p_{i} \quad m=1 \\
& \frac{-\left(L_{p_{i}}\right)_{x}+\frac{L_{u}}{1 /}}{}=0
\end{aligned}
$$

Ex 3. $L(p)=\operatorname{det}(p) \quad p=\left(p_{i}^{j}\right){ }_{n \times n}$

$$
u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad p=\left(\frac{\partial u^{i}}{\partial x j}\right) \text { - Jacobian matrix. }
$$

This requires some work:

$$
\begin{aligned}
& -\frac{\partial}{\partial x j}\left(L_{p_{j}^{k}}\right)=0 \text { - heed to prove } \\
& A=\left(a_{j}^{i}\right) \quad A_{j}^{i} \text {-cofactor } \quad u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& {\left[\begin{array}{l}
-\left[\sum_{l=1}^{n} a_{i}^{l} A_{j}^{l}=\delta_{i j} \underline{\underline{\operatorname{det}(A)}}\right. \\
\Rightarrow L_{p_{j}^{h}}^{h}=A_{j}^{k}
\end{array} \quad \begin{array}{l}
\frac{\text { kramer's rule }}{\longrightarrow a_{j}^{i}=\frac{\partial u^{i}}{\partial x_{j}}}
\end{array}\right.} \\
& -\frac{\partial}{\partial x_{j}}\left(A_{j}^{k}\right) \quad \frac{\partial}{\partial x^{j}} \\
& \operatorname{dut}(A)=a_{k}^{l} A_{k}^{\ell} \\
& \left.\underset{\substack{\text { tahig } \\
\text { \& sum } j}}{\Downarrow \frac{\partial}{\partial x^{j}}\left(\sum a_{i}^{l} A_{j}^{l}\right)^{\frac{\partial}{\partial j j}}\left(\sum_{i j} \operatorname{det}(A)\right.}\right) \\
& \Rightarrow \quad u_{i+1}^{l} A_{j}^{l}+a_{i}^{l}\left(A_{j}^{l}\right)_{j}=\delta_{j j}
\end{aligned}
$$

$04 / 01 / 2021$
Application - Browner Fix Point Theorem:

- observation .

$$
\left\{\begin{array}{l}
\text { If } \forall x \in B \\
u(x) \neq x=x
\end{array}=\right.
$$

$$
\left.\omega\right|_{\partial \beta}=i \text { identity }
$$

$$
\longrightarrow w_{i} B \rightarrow \partial B
$$

- Assume w.L.G $w$ is smooth - by approximation
$\underline{W} \&$ id $\left.w\right|_{\partial B}=\left.i d\right|_{\partial B}$

$$
O=\int_{B} d e t(D \omega) d x=\int_{\uparrow_{B}^{B}} \operatorname{det}(D(d))=|B|
$$

$$
W: B \rightarrow \partial B
$$

$|\omega|^{2}=1$
Lemma: If $\left.u_{1}\right|_{\partial \Omega}=u_{2} /_{\partial \Omega}$

$$
w^{\top} \cdot\left(\frac{D w i}{\partial x_{j}}\right)=0
$$

$$
\Rightarrow I\left(u_{1}\right)=\int_{\Omega} L\left(D u_{1}, u_{1}, x\right)=\int_{\Omega} L\left(D u_{2}, u_{2}, x\right)=I\left(u_{2}\right)
$$

$$
\begin{aligned}
& u_{t}=t u_{1}+(1-x) u_{2} \quad u_{t} / 2 n=u_{1}=u_{2} \\
& \left.=u_{2}+\left(u_{1}-u_{2}\right) t\right) \quad \eta=u_{1}-u_{2} \\
& \Rightarrow \quad I^{\prime}(t)=\frac{d}{d t} \int_{\Omega} L\left(D\left(u_{2}+t \eta\right), u_{2}+t \eta x\right) \\
& \left.=\int_{\Omega} \prod\left(p_{k}^{i}\right) \eta^{i} x_{k}\right)+L_{u^{k}} \eta^{k} \\
& =\int_{\Omega}\left[-\frac{\partial}{\partial x^{k}}\left(L_{p_{k}^{i}}\right)+L_{u_{t}{ }^{i \frac{i}{0}}}\right] \eta^{i} \equiv 0 \\
& \Rightarrow I(0)=I(1)
\end{aligned}
$$

When \& where? - Existence is not automatic

Ex 1:

$$
I(z)=\int_{0}^{1} \frac{\left(1+z_{x}^{2}\right)^{\frac{1}{4}}}{1} d x\left\{\begin{array}{l}
z(0)=0 \\
z(1)=1
\end{array}\right.
$$

$$
z \in \text { piece wisely } c^{\prime} \text { or } c^{\prime}=A \quad L(p)=\left(p^{2}+1\right)^{\frac{1}{4}}
$$

$$
\underset{\delta}{z(x)}=\left\{\begin{array}{cc}
0 & 0 \leqslant x \leqslant \delta \\
\frac{1}{\delta}(x-(1-\delta)), 1-\delta \leqslant x \leqslant 1
\end{array}\right.
$$

$$
\begin{aligned}
& I\left(z_{s}\right)=\frac{1-\delta)+\int_{1-\delta}^{1} \frac{\left(1+\frac{1}{\delta^{2}}\right)^{\frac{1}{4}}}{<}}{} \begin{aligned}
1-\delta+\delta^{\frac{1}{2}}\left(1+\delta^{2}\right)^{\frac{1}{4}}
\end{aligned} \\
&\left.\Leftrightarrow \frac{\left(1+\delta^{\frac{1}{2}}\right.}{1}\right)^{\frac{1}{4} \leqslant} \leqslant \delta^{\frac{1}{2}} \\
& \Rightarrow I\left(z_{\delta}\right) \longrightarrow 1 \quad \text { but } \quad I(z) \geqslant 1 \quad \forall z \in \beta
\end{aligned}
$$

The can write down $\tilde{z}_{\delta} \in C^{\prime}[0,1]$ by modification.
Example shows not always one (hen find a minimiser The sequence $z_{\delta}$ with $I\left(z_{\delta}\right) \longrightarrow \inf I(z)$ is Called a "minimizing sequence"
$\left.\left.\begin{aligned} & \text { Ex 2: } \\ & \text { Stands for Dirichlet }\end{aligned}\left|(\psi):=\int_{\Omega}\right| \nabla \varphi\right|^{2} \quad \varphi\right|_{\partial \Omega}=\psi$ $\partial \Omega$ Smooth. \& smooth. $\psi$ extends to some smooth functions on $\Omega$
$\left\{\begin{array}{l}W_{0}^{1: 2}(\Omega) \text { is the A we consider, namely } \\ \varphi=\psi+\eta \Rightarrow W_{0}^{1.2}(\Omega)\end{array}\right.$
The minimizing sequem will be $\varphi_{n}$ Satiforng

$$
\begin{aligned}
& \left.\varphi_{n} \in W^{\prime 2}(\Omega) \quad \varphi_{n}\right|_{\partial \Omega}=\psi \\
& \underset{\int\left|\nabla \varphi_{m}\right|^{2}}{=D\left(\varphi_{n}\right)} \longrightarrow \quad \inf _{\varphi \in A} D(\varphi) \\
& \text { Poincare } \\
& \text { inequality } \\
& \varphi_{n}-\psi \in \omega_{0}^{\frac{\varphi \in A}{\prime 2}(\Omega)} \Rightarrow \int_{\Omega}\left|\varphi_{n}-\psi\right|^{2} \leqslant C \int_{\Omega}\left|\nabla \varphi_{n}-\nabla \psi\right|^{2}
\end{aligned}
$$

$\Rightarrow \quad \underline{\zeta_{n} \text { is bounded in } W^{1.2}(\Omega)}$ weakly



We need to show
( $\otimes$ ) $\prod_{n \rightarrow \infty}^{\lim _{n \rightarrow \infty}} D\left(\varphi_{n}\right) \geqslant D\left(\varphi_{\infty}\right)$ 盁 verify that $\varphi_{\infty}$ is
a minimiser found. ( $k$ ) is the so-callal
Seni-lower contimity of the functional.
Thin ib relatively easy! read Jost's $P D E$ (Which you may download for free from Springers, website. Jose also has a Good" Rem Geom \& Grown. Andysis" (We usually assume $L: \mathbb{R}^{n} \times \mathbb{R} \times \Omega$ Smooth )
Theorem (existence) $U=\Omega$-bounded, $\partial \Omega$ nice Assumptions: $\quad 1<q<\infty$
(1) $L(p, z x) \geqslant \alpha|p|^{q} \beta \quad \alpha \cdot \beta \in \mathbb{R}^{+}$
(2) $L(p, z, x)$ is convex in $p\{-L$ dictation where

$$
A=\left\{u \in W^{1 \cdot q}(\Omega) \quad|u|_{\partial \Omega}=f\right\}
$$

Then $\exists u \in A$

$$
\begin{aligned}
& I(u)=\inf _{w \in A} I(w) \\
& L(p, z x) \geqslant \underbrace{L\left(p_{0}, z, x\right)+\left.L_{p}\right|_{p_{0}} \cdot\left(p-p_{0}\right)}
\end{aligned}
$$

Step 1: Reduction to the weak lower-semicontimity.
Take $u_{h} \in A \quad I\left(u_{h}\right) \rightarrow\left(\inf _{w \in A} I(w) \div m\right.$ w. L.G $\frac{L(p, z, x) \geqslant \alpha|p|^{2}}{\Downarrow}$ by adding a constant

$$
\alpha \int \underset{\substack{\nabla u_{k}}}{\mid u_{1} u_{1}^{q} \leqslant} \underset{\left(u_{k}\right) \leqslant m+A .}{ }
$$

pick $\underline{w_{0} \in A} \Rightarrow \underline{u_{k}-w_{0} \in W_{0}^{1.2}(\Omega)}$

$$
\Rightarrow \quad \int\left|u_{k}-w_{0}\right|^{q} \underset{\uparrow}{\lessgtr} C_{\underline{q}}\left|D\left(u_{k}-w_{0}\right)\right|^{2}
$$

By the Poincare inequality $T \leqslant C\left[\frac{(m+A)}{\alpha}+B\right]$

$$
\left.\Rightarrow \quad\left\|u_{k}\right\|_{L^{2}} \leqslant\left\|u_{k}-w_{0}\right\|_{L}\right)+\left\|w_{0}\right\|_{L^{2}} \leqslant C
$$

So $\left\{u_{h}\right\}$ forms a bounded sequence in $W^{!q}(\Omega)$
$\Rightarrow B_{y}$ parsing subsequence $\Rightarrow\left\{u_{k}\right\} \rightarrow u$ weakly.

$\Rightarrow L^{\varphi} \in L^{g^{\prime}}$ Lower Semi-contimuity asserts $-\psi$ V.c. $\in L^{I^{\prime}}$

$$
\begin{equation*}
\Rightarrow \frac{I(u) \leqslant \frac{h i}{k \rightarrow \infty} I\left(u_{k}\right)}{u-w_{0} \in W_{0}^{\prime!}(\Omega) \quad \text { By Mczurs therm }} \tag{*}
\end{equation*}
$$

$$
\Rightarrow \quad I(u)=m
$$

Hence the key is to prove (*). This nears the convexity! care $L(p, z, x)=|p|^{2}$.

$$
\begin{aligned}
& \text { "(1) } L \geqslant \alpha|p|^{\underline{g}} \geqslant 0 \\
& (2) \quad u_{k} \rightarrow u \text { weakly }
\end{aligned} \Rightarrow \lim _{k \rightarrow \infty} I\left(u_{l}\right) \geqslant I(u)
$$

(3) $L$ comas in $p$

Thin is slightly more than what is needed.

$$
\left\{\begin{array}{ll}
u_{k} \longrightarrow u \text { weakly }
\end{array} \Leftrightarrow \begin{array}{ll}
\forall \varphi \in L^{q^{\prime}}(U) & q^{\prime}=\frac{q}{q-1} \\
\psi \in L^{q^{\prime}}\left(U, \mathbb{R}^{n}\right) & \frac{1}{\xi^{1}+\frac{1}{q}}=1 \\
\int\left(u_{k}-u\right) \varphi \longrightarrow 0 \&\left[\left(D u_{k}-D u\right) \cdot \psi \rightarrow 0\right.
\end{array}\right.
$$

Uniform-boundednas-principle

$$
\left.\begin{array}{l}
\Rightarrow \sup _{k} \int\left|u_{k}\right|^{q}+\left|D u_{k}\right|^{q} \leqslant A \\
\& \quad \int|u|^{q}+|D u|^{q} \leqslant A
\end{array}\right\}
$$

Shall show $\forall \varepsilon>0 \quad \exists G_{\varepsilon} \quad|U| G_{\varepsilon} \mid<\gamma(\varepsilon) \rightarrow 0$ \& $G_{\varepsilon}$ increasing

$$
\int_{G_{\varepsilon}}^{\underbrace{G(D u, u, x)}_{G_{\varepsilon}} \leqslant \underbrace{l:=\underbrace{G_{\varepsilon} \text { increasing }}} \underbrace{\lim _{k \rightarrow \infty} I\left(u_{k}\right)} \quad \begin{array}{l}
\text { passing } \\
t_{0} a \\
\text { subsequence }
\end{array}}
$$

$$
U_{k} \longrightarrow u \text { in } L^{q} \quad \& \quad \text { are }
$$

$$
\left.|\omega| E_{\varepsilon} \mid<\varepsilon\right\}
$$

$\forall \varepsilon \exists E_{\varepsilon}$ such that $|\omega| E_{\varepsilon} \mid<\varepsilon$
\& $u_{k} \longrightarrow u$ uniformly.

$$
\begin{aligned}
& F_{\varepsilon}:=\left\{x \in U \left\lvert\,(|\mu|+|D u|)^{(x)}<\frac{1}{\varepsilon}\right.\right\} \\
& \Rightarrow\left|F_{\varepsilon}^{c}\right| \cdot\left(\frac{1}{\varepsilon}\right)^{q} \leqslant A \Rightarrow\left|F_{\varepsilon}^{c}\right| \leqslant A \varepsilon^{q} \rightarrow 0 \\
&\left(\left.\perp\right|^{q}\left|I^{c}\right| \leqslant \int_{c}|D u|^{q}+|u|^{2} \leqslant A\right.
\end{aligned}
$$

But

$$
\begin{aligned}
& \quad I\left(u_{k}\right) \geqslant \int_{G_{\varepsilon}} L\left(D u_{k}, u_{k} x\right) \\
& \geqslant \int_{G_{\varepsilon}} L\left(D u, u_{k} x\right)+{ }^{*}\left(D_{p} L\right)\left(D u_{1} u_{k} x\right) \cdot\left(D u_{k}-D u\right)
\end{aligned}
$$

$15 t$

$$
\lim _{h \rightarrow \infty} \int_{G_{\varepsilon}} \underbrace{L\left(D u, u_{k} x\right)}=\int_{G_{\varepsilon}} L(D u, u, x)
$$

$\xrightarrow[\underline{U_{k} \rightarrow u}]{ }$ uniformly on $G_{\varepsilon}$

$$
\Rightarrow \quad\left|U_{\varepsilon}\right|+|n| \leqslant \frac{3}{|D u| \leqslant \frac{1}{\varepsilon}}<
$$

$D C T \Rightarrow$ the claim
and $\int_{G_{\varepsilon}} \frac{\left(D_{p} L\right)\left(D u_{1} u_{k} x\right) \cdot\left(D u_{k}-D u\right)=0}{\psi}=0$

$$
\left(D_{p} L\right)(D u, u, x) \in L^{q^{\prime}}
$$

Since $|D n|+|n| \leqslant \frac{1}{\varepsilon}$ on $G_{\varepsilon} \quad \psi_{11}$

$$
\Rightarrow \quad \lim _{h \rightarrow \infty} \int_{G_{\varepsilon}} \underbrace{}_{\begin{array}{c}
\text { on } G_{\varepsilon} \text { does not cause problem can multiply by } x_{G \varepsilon} \\
\left.D_{p} L\right)(D u, u, x)
\end{array} \underbrace{}_{\substack{\text { we }}}\left(D u_{k}-D u\right)=0}
$$


\& bounded.

$$
\begin{aligned}
& \forall \delta>0 \exists K \\
& \Rightarrow \quad h>K \\
& \Rightarrow \int_{G_{\varepsilon}}\left(\psi_{h}-\psi\right) \cdot\left(D u_{h}-D n\right) \\
& \leqslant \delta \psi_{h}-\psi \mid<\delta \\
&\left|D u_{h}-D n\right| \leqslant A^{\prime} \delta
\end{aligned}
$$

Note $\quad \int_{u}\left|D u_{k}\right|^{q}+|D n|^{q} \leqslant A$

Hence $\frac{\lim _{h \rightarrow \infty}}{} I\left(u_{k}\right) \geqslant \int_{G_{\varepsilon}} L(o u, u, x)$
By MCT, $\Rightarrow I(n)=\int_{U} L(D u, u x) \leqslant \lim _{k \rightarrow \infty} I\left(u_{k}\right)$

