(c) - first
$u: \Omega \rightarrow S^{n-1} \subset \mathbb{R}^{m} \quad I(u) \neq \frac{1}{2} \int_{\Omega}|\nabla n|^{2}$

$$
A=\left\{u \in H^{\prime}\left(\Omega, \mathbb{R}^{n}\right) \left\lvert\, \begin{array}{l}
|u|^{2}=1, \text { a.e } \\
\left.u\right|_{g \Omega}=g: \longrightarrow \Phi^{n-1}
\end{array}\right.\right\}
$$

Assume such set is NOT empty.
Theoren: Minimizer exists \& satishi weakly

$$
\left.\left\{\begin{aligned}
-\Delta u=\left\{|\nabla u|_{i}^{2}, u,\right. & \text { ie } \\
\left.u\right|_{\partial \Omega}=\dot{g} \cdots & \forall v \in H_{0}^{\prime}\left((n)^{2}\right)
\end{aligned}\right\}\langle\nabla u, \nabla v\rangle, \int|\nabla u|^{2}\langle u, v\rangle\right)
$$

We use the notation from the last lecture

$$
\langle\nabla U, \nabla v\rangle=\sum u_{x_{j}}^{i} v_{x_{j}}^{i}=\operatorname{trvec}^{\text {use the notation form th }}\left[(D v)^{t} \cdot D u\right]
$$

Proof: $\quad\left\lfloor|p|=\frac{1}{2}|p|^{2} \geqslant \approx|p|^{2}-\beta\right.$
\& ConveX. $\underset{2}{\Rightarrow}$ Minimising sequence $\left\{U_{k}\right\}$
has $\left\|u_{h}\right\|_{H^{\prime}}^{2} \leqslant A$

$$
\begin{array}{ll}
\Rightarrow \exists & u_{k} \longrightarrow u_{\infty} \\
\& & I\left(u_{\infty}\right) \leqslant \liminf _{\substack{n \rightarrow \infty}} I\left(u_{l}\right)=\inf _{v \in \mathbb{A}} I(n)
\end{array}
$$

$$
u_{k}-u_{1} \in H_{0}^{\prime} \Rightarrow u_{\infty}-u_{1} \in H_{0}^{\prime}
$$

by Majur's theorem (weak closeness)
Moreover it $\left.\Rightarrow u_{\infty}\right|_{\partial \Omega}=u_{1} l_{\partial \Omega}=g$
Since $\left|u_{r}\right|^{2}=1$ are

$$
\Rightarrow \quad\left|u_{\infty}\right|^{2}=1 \quad \text { a.e } \quad \Rightarrow \quad \begin{gathered}
\text { Minimizer } \\
\text { exists }
\end{gathered}
$$

Now we shows it satizfis the Euler-Lagragian with the multiplier $|\nabla u|^{2}$
Assume U is the minimizer. Now $\forall v \in H_{0}^{\prime}\left(\Omega, \mathbb{R}^{m}\right)$

$$
v \in C_{c}^{\infty}(\Omega)
$$

$\left.\underbrace{u+\tau v}\right|_{\partial \Omega}=g \quad w(\tau) \doteq \frac{u+\tau u}{|u+\tau u|} \quad$ has the porpurty

$$
\begin{array}{ll}
\partial \Omega & u+\tau v \neq 0 \text { are }|u+\tau v| \\
|u+\tau v| \geqslant|n|-\tau|l|=r| |(v) \geqslant \frac{1}{2} \text { are } & |w|^{2}=1 \\
\text { ale }
\end{array}
$$

If we are vent careful. $V \in C_{c}^{\infty}(\Omega)$ works

$$
\begin{aligned}
& \Rightarrow \quad-\int_{\Omega} \frac{|\nabla u|^{2}\langle u v\rangle}{|u|^{4}} \\
& \Rightarrow v=\int_{\Omega}\langle\nabla u \nabla v\rangle-|\nabla u|^{2}\langle u, v\rangle \quad \forall v \epsilon_{\imath}^{\infty}\left(\Omega, \mathbb{R}^{n}\right) \\
& \Rightarrow\left\{\begin{aligned}
&-\Delta u=|\nabla u|^{2} u \quad \text { weakly } \\
&\left.u\right|_{\partial \Omega}=g
\end{aligned}\right.
\end{aligned}
$$

(d) Stoke problem $\left\{\begin{array}{l}\rightarrow I(u)=\frac{1}{2} \int|\nabla u|^{2}-\int f u \\ A=\left\{u \in H_{0}^{\prime}\left(\Omega, R^{3}\right)^{3} \mid(\operatorname{dir} u=0\}\right. \\ a \cdot e\end{array}\right\}$

Theorse: \exists minimize $u \in H_{0}^{\prime}\left(\Omega, \mathbb{R}^{3}\right)$
\& U satrifies: $\exists P-$ a prasure function $\in L_{\text {Doc }}^{2}(\Omega)$
$\& \underbrace{\begin{array}{l}-\Delta u=f-\nabla p \\ \left.u\right|_{\partial \Omega}=0\end{array}} \begin{aligned} & \text { ie. } \\ & \begin{array}{l}\text { Weachly }\end{array} \\ & \begin{array}{c}\text { pressure is caused by the } \\ \text { constrain }\end{array} \\ & A\end{aligned}$
constrain A-requinig $\operatorname{div}()=$.
Existence of the Minimizer: As before, we may prove the
existence of th minimizer sine

$$
L(p, z)=\frac{1}{2}|p|^{2}-\frac{f-z}{\uparrow \text { does not really cause }} \text { any issue }
$$

$$
\begin{aligned}
& \left\{U_{h}\right\} \text { is a minimizing sequence } \\
& \left\langle f, u_{k}\right\rangle \\
& f^{\prime \prime} \cdot u_{k} \\
& \Rightarrow \quad I\left(u_{L}\right) \leqslant A \\
& \left.\Rightarrow \quad \int_{\Omega} \frac{1}{2}\left|\nabla u_{k}\right|^{2}-f \cdot u_{k}\right) \leqslant A \\
& \Rightarrow \quad \frac{1}{2} \int_{\Omega}\left|\nabla u_{h}\right|^{2} \leq A+\int_{\Omega} f u_{h} \\
& \leqslant A+\|f\|_{L^{2}}\left\|u_{n}\right\|_{L^{2}} \\
& \leqslant A+\varepsilon\left\|u_{n}\right\|_{L^{2}}^{2}+\frac{1}{4 \varepsilon}\|f\|_{L^{2}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Poincare lies }
\end{aligned}
$$

$$
\Rightarrow \quad \frac{1}{4} \int\left|\nabla u_{n}\right|^{2} \leqslant \quad A(\Omega, f) \text {. }
$$

The rest is easy! $\left\{\begin{array}{l}u_{\infty} \text { is a minimizer } \\ d_{i v}\left(u_{\infty}\right)=0 \text {. } .\end{array}\right.$
Now assam u is the minimizer the $\frac{\forall w \in A}{w \in H_{0}^{\prime}\left(\Omega, \mathbb{R}^{3}\right)}$

$$
\begin{array}{ll}
|0|=\left.\frac{d}{d \tau}\right|_{\tau=0} \frac{1}{2}|\nabla(u+\tau \omega)|^{2}-f(u+\tau \omega) & \operatorname{div} \omega=0 \\
\left.=\int_{\Omega}\left\langle\nabla u . \nabla_{w}\right\rangle-f w\right] \quad \forall \begin{array}{l}
\left.w \in\right|_{0} ^{\prime}\left(\Omega, \mathbb{R}^{3}\right) \\
\alpha \omega \omega=0
\end{array}
\end{array}
$$

$\Rightarrow \forall w$ satisfies dir $w=0$

$\Rightarrow \exists(p) \quad-\Delta u-f=\theta d p$
or equivalently $\quad \Delta u=D p-f$.
The argnement in the book simplyisto put the above ont rigorously!

Hence. Hodge theory was used implicitly, with the L^{2} - estimate associated with it
Result of Hodge theory was formulated by Hodge, proved by $H_{\text {. Weyl, \& K. Kodrira in } 1949 .}$
See Murrey ch 6 for boundary value case.

$$
\begin{array}{ll}
\text { First } & \int \underbrace{\begin{array}{c}
\left\langle\nabla_{n}, \nabla_{v}\right\rangle-\langle f, r\rangle=0 \\
v_{\varepsilon}
\end{array}} \quad\left\{\begin{array}{l}
\frac{\forall v \in C_{0}^{\infty}\left(\Omega, \mathbb{R}^{3}\right)}{(\operatorname{div}-0}
\end{array}\right. \\
\Rightarrow & \left.\int \nabla_{\varepsilon} \nabla_{r}\right\rangle-\left\langle f_{\varepsilon} u\right\rangle=0
\end{array}
$$

$\Rightarrow \quad-\Delta u_{\varepsilon}-f_{\varepsilon}$ don satisfies the above discussion
$\Rightarrow \quad \exists P_{\varepsilon}$ such that

$$
-\Delta u_{c}-f_{c}=-\nabla p_{i}, \quad f_{\Omega} p_{2}=0
$$

\Rightarrow Namely $\quad \int\left\langle\nabla u_{2}, \nabla_{r}\right\rangle-\left\langle f_{2} \quad v\right\rangle=-\int\left\langle\nabla p_{2}, v\right\rangle$
The ides is to get a subsequence out of $P_{\varepsilon} \rightarrow P$
This needs some estimate.
prick P_{ε} so that $\int_{\Omega} P_{c}=0$

$$
\Rightarrow \exists \begin{aligned}
& \text { Pick } \\
& \Rightarrow v_{\varepsilon} \quad \text { such thar }\left\{\frac{d_{\Omega}}{v_{\varepsilon} \in U_{\varepsilon}}=P_{\varepsilon}\right.
\end{aligned} \text { Strictly Speaking }
$$

$$
\left\{\begin{array}{l}
\Delta \varphi_{c}=P_{c} \\
\varphi_{\varepsilon} \in H_{0}^{2}
\end{array} \quad \Rightarrow \begin{array}{l}
v_{\varepsilon}=\nabla \varphi_{c} \text { will } d_{0} \\
v_{\varepsilon} \in H_{0}^{\prime} \text { is } N_{0} T \text { ensured! }
\end{array}\right.
$$

we need to solve
a d-problem $d v_{\varepsilon}=P_{\varepsilon} \quad v_{\varepsilon}-2$-form
\exists estimate $\mid\left\|V_{\varepsilon}\right\|_{H^{\prime}} \leqslant C\left\|P_{\varepsilon}\right\|_{L^{2}}$ with Dirichlet boundary. $\int \begin{aligned} & P_{\varepsilon}=0 \text { is to ensure. } \\ & P_{i} \text { is in the ingle }\end{aligned}$

$$
\begin{aligned}
& \leqslant \quad\left\|\nabla v_{\varepsilon}\right\|_{L^{2}}\left\|\nabla u_{\tau}\right\|_{L^{2}}+\|f\|_{\varepsilon}\left\|v_{L^{2}}\right\|_{L^{2}} \\
& \leqslant\left\|v_{\Sigma}\right\|_{H^{\prime}}\left(\left\|\nabla u_{c}\right\|_{L}+\left\|f_{\Sigma^{2}}\right\|_{L^{2}}\right) \leqslant \frac{C\left\|P_{c}\right\|_{L^{2}}}{}\left(\|\nabla u\|_{L^{2}} \|_{L^{2}}\right)
\end{aligned}
$$

$\Rightarrow \exists$ uniform up-bound $\cdot f \underbrace{\left\|P_{\varepsilon}\right\|_{2}}_{\varepsilon} \Rightarrow \exists P^{\exists}$ as $\varepsilon \rightarrow 0$
$\Rightarrow(*)$ Again $\int\left\langle\nabla u_{2}, \nabla v\right\rangle-\left\langle f_{\varepsilon^{\prime}} v\right\rangle=-\int\left\langle\nabla p_{r} v\right\rangle$

$$
\begin{aligned}
\Rightarrow \int\langle\nabla u, \nabla v\rangle-\langle f v\rangle & =-\int\langle\nabla p, v\rangle \\
& =\int p d i v
\end{aligned}
$$

(b) Variational inequality.

$$
\begin{aligned}
& q=\left\{\begin{array}{l|l}
\left.u \in H_{0}^{\prime} / \Omega\right) & u \geqslant h \\
\text { ane }
\end{array}\right\} \\
& I(u)=\left\{\frac{1}{2}|\nabla u|^{2}-f u\right.
\end{aligned}
$$

Theorem: $\exists!$ minimizer. U
Moreover u satisfies

$$
\int_{\Omega}\langle\nabla u, \nabla(w-u)\rangle \geqslant \int_{\Omega} f \cdot(w-u) \quad \forall w \in \mathcal{X}
$$

Pf: A is cimex. $L\left(P, z \left\lvert\,=\frac{\frac{1}{2}|P|^{2}-\frac{f z}{T l} L^{\prime}(P)}{\text { linear term does mater much }}\right.\right.$
Existence - exactly as the previous case
If U_{1}, U_{2} two minimizes

$$
\begin{aligned}
& v=\frac{u_{1}+u_{2}}{2} \quad v \geqslant h \quad v \in \notin \\
& I(v)=\quad \int \frac{1}{2}\left|\nabla\left(\frac{u_{1}+u_{2}}{2}\right)\right|^{2}-f\left(\frac{u_{1}+u_{2}}{2}\right) \\
& L_{\text {is convex }}=\int \frac{\frac{1}{2}\left|\nabla\left(u_{1}+\frac{u_{2}-u_{1}}{2}\right)\right|^{2}}{L^{\prime}(\nabla v)}{ }^{2} \\
& \text { in } P
\end{aligned}
$$

used $\left.L^{\prime}\left(\nabla v+\nabla \frac{u_{1}-u_{2}}{2}\right) \geqslant L^{\prime}(\underline{\nabla u})+L_{p}^{\prime}(\nabla)^{\nabla}\right)^{\left(u_{1}-u_{2}\right)} 2 \cdot \frac{1}{2}\left|\frac{\nabla u u_{1} \nabla u_{2}}{2}\right|^{2}$

$$
\begin{aligned}
& \text { (1) }=\| \nabla u_{1}^{2} \quad \text { (2) }{ }^{2} \\
& I(v) \leqslant \int_{-\frac{1}{2}\left|\nabla u_{2}\right|^{2}-\frac{L_{p}(\nabla v) \nabla \frac{\left(u_{2}-u_{1}\right)}{2}}{}-\frac{f\left(u_{1}+\nabla u_{2}+\frac{u_{1}-u_{2}}{2}\right)}{2}+u^{2}}^{\left.-\frac{u_{2}}{2} \right\rvert\,} \\
& v \neq\left(\frac{u_{2}-u_{1}}{2}=u_{2}\right. \\
& -\frac{1}{2} \int\left|\frac{\nabla u_{1}-\nabla u_{2}}{2}\right|^{2}
\end{aligned}
$$

$$
\Rightarrow \quad 2 I(r) \leqslant \quad I\left(u_{1}\right)+I\left(u_{2}\right)-\frac{1}{4} \int\left|\nabla u_{1}-\nabla u_{2}\right|^{2}
$$

Namely I(1, thitiquences is the same as before!
$\begin{array}{ll}\text { Now } & u+\tau(\underbrace{(1-\tau) u+\tau \omega \geqslant h}_{\omega-u \in+H_{0}^{\prime}(\Omega)} \quad \text { a.e } \\ \Rightarrow & I(u+\tau(\omega-u)) \geqslant I(u)=\left.I(\tau)\right|_{\tau=0}\end{array}$

$$
\left.\Rightarrow \quad I_{+}^{\prime}(0)\right|_{\tau=0}=\lim _{\substack{\tau \rightarrow 0 \\ \tau>0}} \frac{I(\tau)-I(0)}{\tau} \geqslant 0
$$

$$
\Rightarrow[\langle\nabla n, \nabla(\omega-n\rangle-f(w-n)] \geqslant 0 .
$$

 $h \geqslant 3$

Theorem (1) If $1<p<\frac{n+2}{n-2} \quad(S L)$ admits

$$
p^{*}=\frac{p}{1-\frac{\partial}{p}}
$$

$$
2^{*}=\frac{2}{1-\frac{2}{n}} \mathrm{P}
$$

(2) If Ω is stor-shoped $p>\frac{h+2}{h-2} \Rightarrow u \in L^{2^{*}}$

 Mountan pass.

We prove (2) first since it is easien
(A) $\left.\int(-\Delta u) u=\int|u|^{p-1} u^{2}\right\}$
(B) $\left.\int_{\Omega}(-\Delta u)\langle\nabla u, x\rangle\right\rangle=\int_{\Omega}|u|^{p-1} u\langle\nabla u, x\rangle$
(i) LHS $=\frac{\frac{2-n}{2}(1) \int_{\Omega}|\nabla u|^{2}-\frac{1}{2} \int_{\| \Omega}|\nabla u|^{2}\left\langle x, V_{u}\right\rangle}{\partial(x) \text { exter }}$
(ii) R

$$
\text { i) RHS }=\left[\begin{array}{ll}
\frac{n}{p+1}(2) \int_{\Omega}|u|^{p+1} & \stackrel{\partial \Omega}{=}
\end{array} \quad \begin{array}{|}
\underline{V(x)} \begin{array}{l}
\text { exterion whit } \\
\text { normal. }
\end{array} \\
\hline
\end{array}\right.
$$

Result follows from Combining dain
\& $\int_{\partial \Omega}|\nabla u|^{2}\langle x, V(x) \geqslant 0$ if Ω is stan-shaped
Then

$$
\Rightarrow u \equiv 0
$$

$$
\begin{aligned}
& \frac{2-n}{2} \int_{\Omega}|\nabla n|^{2} \geqslant-\frac{n}{p+1} \int_{\Omega}|n|^{p+1} \\
& \sqrt{\left(\left.\frac{2-n}{2} \int|n|^{p+1} \right\rvert\,\right.} \Rightarrow \frac{\sqrt{\left(\int|n|^{p+1}\right)\left(\frac{n-2}{2}-\frac{n}{p+1}\right)}}{\frac{1}{2 p+1 \mid}((p+1)(n-2)-2 n)} \leqslant 0 \\
& =\frac{(n-2)}{2(p+1)}\left(p+1-\frac{2 n}{n-2}\right) \\
& \Rightarrow \text { If } n \geqslant 3 \text { \& } p>\frac{n+2}{n-2} \\
& =\frac{\frac{n-2}{2(p+1)}\left(p-\frac{n+2}{n-2}\right)}{}
\end{aligned}
$$

$$
\langle x, \nu(x)\rangle \geqslant 0 \quad \forall \quad x \in \partial \Omega
$$

Geometric clear.
We worry about th proof later!

(ii) is easy:

$$
\begin{aligned}
& \int_{\Omega}|u|^{p-1} u \underline{\langle\nabla u, x\rangle}=\int_{\Omega} \frac{\left.|u|^{p-1} u u_{x_{j}}\right)^{x} d}{} \\
& =\int_{\Omega}\left(\frac{|u|^{p+1}}{p+1}\right)_{x_{j}} x_{j} \\
& =-\int_{\Omega} \frac{|u|^{p+1}}{p+1}\left[x_{\left.\left.j^{\prime}\right)^{\prime} x_{j}\right]}=-\frac{n}{p+1} \int|u|^{p+1}\right.
\end{aligned}
$$

(i)

$$
\begin{equation*}
\Rightarrow\langle\underbrace{u_{x_{i}}} v_{i}\rangle= \pm|D u| \tag{2}
\end{equation*}
$$

putting together we have (ii)

Lemma $\forall x \in J \Omega$

$$
\left\langle V(x), \frac{x}{|x|}\right\rangle \geqslant 0
$$

$$
\Rightarrow\langle v(x), x\rangle \geqslant 0
$$

$$
\Omega \quad c^{\prime}
$$

proof

$$
\lim _{\substack{y \rightarrow x \\ y \in \Omega}}\left\langle\underline{v(x)}, \frac{y-x}{|y-x|}\right\rangle
$$

near x - Charge of coordinates

