Regularity of $\left\{\begin{array}{l}d_{t}\left(\nabla^{2} u\right)=f \quad \text { in } \Omega \\ \left.u\right|_{\partial \Omega}=g\end{array}\right.$
is very tricky. See example in Exercise 31. Regularity is dual to $\left\{\begin{array}{l}\text { Lion ill type theorem } \\ \text { Bernstein type theorem }\end{array}\right.$

Interior regularity is related to the boundary value
This is drastically different from the linear care

Theorem (Jörgens-Calobi- Pogorelorr)
$u \in C^{\infty}\left(\mathbb{R}^{n}\right) . \quad \operatorname{det}\left(\nabla^{2} u\right)=1 \quad \nabla^{2} u>0$
then U is a quadratic polynomial.
I shall present a proof using John's Lemma \& Evan's (1982) interior $C^{2, \alpha}$ estimate. The key is a C^{2}-estimate
of Poyorelor. or Calabis C^{3}-estimate (1958) $\int_{1972 \text { Paper }}^{19}$

(I) Theorem (Pogorelow). $u \in C^{4}(\Omega) \cap C^{2}(\sqrt[\Omega]{)}$
is a convex solution of $\left\{\begin{array}{l}\operatorname{det}\left(f_{4}\right)=\varphi>0, \text { in } \Omega \\ \left.u\right|_{j} \Omega=0\end{array}\right.$
Then $\left|\nabla^{2}\right|(x) \leqslant\left[C\left(|a| 0,|\nabla u|_{0,},|\nabla \ln \varphi|_{0}\left|\nabla^{2}\right|, \xi| |_{0}\right) /\left(d|x, \partial \Omega| M_{\text {ax }}|u|\right)\right]$
pf: $\forall \alpha|\alpha|=1$ direction consider $W=(-u) e^{\frac{1}{2} U_{\alpha}^{2}} u_{\alpha \alpha} \quad(=0 \quad$ say \quad o $\partial \Omega)$.
say $x_{0}=0$. We estimate $w\left(x_{0}\right)$
where x_{0}. We

$$
\begin{aligned}
& \text { First pick a rome } \int^{\text {a }} \sqrt{a t x_{i}=0}=(-u) e^{\frac{1}{2} u_{1}^{2}} u_{11} \text { \& } u_{i j}=u_{i i} \delta_{i j} \text { at } x_{0}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \geqslant \nabla_{i} \nabla_{i} \cdot \log \omega=\frac{u_{i i}}{u}-\left(\frac{u_{i}}{u}\right)^{2}+{ }_{\text {Bad }} u_{1 i i} u_{1}+\underbrace{u_{1 i}^{\prime \prime} u_{1 i}}+\frac{u_{11 i i}}{u_{11}}-\frac{u_{12 i}<L^{b a}}{\left(u_{11}\right)^{2}} \text { (2) }
\end{aligned}
$$

$$
\left.\ln \operatorname{det}\left(u_{i j}\right)=\ln \varphi \quad \sum \sum\left(\frac{u_{i}}{u}\right)^{2} \frac{u_{11}}{u_{i i}}=1 \frac{u_{1}}{u}\right)^{2}+\sum_{i \neq 1}\left(\frac{u_{i}}{u}\right)^{\frac{2}{2}} \frac{u_{11}}{u_{i i}}
$$

Now we use $\quad u^{i j} u_{i j i}=(\ln \varphi)_{1} \quad \frac{u_{i i}}{u_{i i}}=(\ln \varphi)_{1}$

$$
\begin{align*}
& u^{i j}, u_{i j i}+u^{i j} u_{i j u}=(\ln \varphi)_{u} \\
& \Rightarrow \quad \frac{u_{i i n}}{u_{i i}}-\frac{\left(u_{i j 1}\right)^{2}}{u_{i i} u_{j j}}=(\log \varphi)_{11} \text { (4) } \\
& \Rightarrow\{n \frac{u_{11}}{u}+\sum_{i, j=1}^{n} \underbrace{\left(u_{i j 1}\right)^{2}}+\underbrace{(\log \varphi)_{11}}_{\text {Bad }}-\sum_{i} \frac{u_{11 i}^{2}}{u_{i i} \cdot u_{11}}+u_{11}^{2}+u_{1} u_{11} \underbrace{\log \rho)_{1}}_{(3)} \tag{3}\\
& \Rightarrow \quad u_{11}^{2}+n \frac{u_{11}}{u}+u_{1} u_{11}(\log \varphi)_{1}+(\log \varphi)_{11}-\left(\frac{u_{1}}{n}\right)^{2} \leqslant 0 \\
& \text { Multiplying } u^{2} e^{u_{1}} \Rightarrow w^{2}+A w+B \leqslant 0 \quad A=\eta e^{u_{1 / 2}^{2}} \\
& A, B \text { depends on } u . u_{1},(\log \varphi),(\log \varphi)_{11} \\
& \text { Hence } \\
& w \leqslant \frac{-A+\sqrt{A^{2}-4 B}}{2} \\
& B=u^{2}(\log \varphi)_{11} e^{u_{1}^{2}} \\
& -\left(u_{1}\right)^{2} e^{u_{1}{ }^{2}}
\end{align*}
$$

Namely at the maximum $w\left(x_{0}\right) \leqslant C$,

$$
\begin{aligned}
& (-u) e^{\frac{1}{2} u_{1}^{2}} u_{11}\left(x_{0}\right) \leqslant c_{1} \\
\Rightarrow & (-u)(x) e^{\frac{1}{2} \underbrace{(\langle\nabla u, x\rangle)^{2}} \nabla^{2} u(x, x) \leqslant c_{1} \Rightarrow(-u) \nabla^{2} u(x, x) \leqslant c_{1}}
\end{aligned}
$$

$\frac{|u(x)|}{d(x, a n \mid} \geqslant \frac{m \times x \ln \mid}{D} \rightarrow$ simply using the convexity

$$
\Rightarrow\left(\nabla^{2} u\right)(x, x) \leqslant \frac{C_{1}}{d(x, \partial \Omega) \max |u|}
$$

This is similar to - Aubin- Tan's C²-estimate on a compact manifold, which was proved later. [$\left.\begin{array}{l}\text { see my } 2019 \text { IJM } \\ \text { paper for a } 1 / \text {-pas proof }\end{array}\right]$

Tho Estimates for $\left.u \in C(\bar{\Omega}) \cap C^{4} / \Omega\right) u \geqslant 0$. Can always be done
(1)

Assume $\quad B_{\frac{1}{n^{3 / 2}}} \subset \Omega \subset B_{1}$ comer by affine transformation via John's Lemma.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\operatorname{det} \nabla_{u}^{2} u=1 \quad \text { in } \Omega \\
u l_{\partial \Omega}=h-\text { constant }
\end{array} \Rightarrow \text { (ii) } \neq\right. \\
& u\left(x_{0}\right)=\text {. for som } x_{0} \in \Omega \\
& \underbrace{\left.\int_{t}^{\doteq\{x \in \Omega \mid u(x)<t}\right\}}
\end{aligned}
$$

The above is the key in gradient

> Then $\exists c_{1} \quad c_{2}>0 \quad c_{i}=c_{i}(h)$ (i) $c_{1} \leqslant h \leqslant c_{2}\left(B_{\tau_{0}}(t) c c_{\frac{1}{2}}\right.$ (ii) $\exists \tau_{0}(n) \in(0.1) \quad B_{\tau_{0}}\left(x_{0}\right) c \Omega \quad$ Enough \quad apply Galah $u<\frac{1}{2} h \quad$ in $B_{\tau_{s}}\left(x_{0}\right)$
(iii) $C_{1} I \leqslant \nabla^{2} u<C_{2} J$ in $S_{y / 2}$

Under the assumption of JCP if $C_{1} I \leqslant \nabla^{2} u \leqslant c_{2} I$
$\Rightarrow \quad d s_{n}^{2}=u_{i j} d x^{i} d x^{j}$ is a complete metric on \mathbb{R}^{n} Calabi's result [1958 paper] corollary on P. 108] \Rightarrow u is quadratic.
or if $\left[\nabla^{2} u\right]_{\alpha, \hat{T_{0} R}}^{\leqslant} \frac{C}{R^{\alpha}}$

$$
\begin{aligned}
& \Rightarrow \forall x, y \in \beta \varepsilon_{0} R \\
& \frac{\left|\nabla^{2} u(x)-\nabla^{2} u(y)\right|}{|x-y|^{\alpha}} \leqslant \frac{c}{R^{\alpha}} \\
& \Rightarrow\left|\nabla^{2} u(x)-\nabla^{2} u(y)\right| \leqslant \frac{C|x-y|^{\alpha}}{R^{\alpha}} \rightarrow 0 \operatorname{cus}_{R \rightarrow \infty}
\end{aligned}
$$

$\Rightarrow \quad \nabla^{2} u$ is constant

We shall first show how to use The to JCP situation.
Then we prove Thu.
$\left\{\begin{array}{l}\text { By translation, rotation, we assume } v(0)=0, \quad \forall u(0)=0 \\ \nabla_{u}^{2}(0)=I, \quad u \geqslant 0\end{array}\right.$
Now we consider $\Omega=\left\{x \mid u(x) \leqslant a^{2}\right\}$ which is a convex body in \mathbb{R}^{n}. By John's theorem. $\exists E$ centered at $x_{0} \in \Omega$, x_{0} is the center of gravity of Ω,

$$
E=\left\{x \left\lvert\, \frac{\left(x^{i}-x_{0}^{i}\right)^{2}}{b_{i}{ }^{2}} \leqslant 1\right.\right\}, E_{\frac{1}{n^{3 / 2}}} \subset \Omega \subset E
$$

This is due to that
$\operatorname{det} \nabla^{2} u=1$ does not change under an affine transformation $T: x \rightarrow A x+c$ with $\operatorname{det} A= \pm 1$

Named if $\tilde{u}(x)=u(A x+c)$

$$
\begin{array}{rlrl}
\text { Names if } \widetilde{u}(x) & =u(A x+c) & \frac{\partial^{2} \tilde{u}}{\partial x^{i} \partial x j^{2}}=\frac{\partial^{2} u}{\partial y^{k} y^{l}} a_{j}^{l} a_{i}^{k} \\
& & & \frac{\partial u}{\partial x^{i}} a_{i}^{k} \\
& =\left(a_{i}^{k}\right)\left(\frac{\partial^{2} u}{\partial y^{k} \partial y^{l}}\right) & a_{j}^{l} \Rightarrow \nabla^{2} \tilde{u}=(A)^{t r}\left(\nabla^{2} u\right) A \\
\Rightarrow & \operatorname{dut}\left(\nabla^{2} \tilde{u}\right) & =\operatorname{det}\left(A^{t r}\right) \operatorname{dut}(A) \operatorname{det}\left(\nabla^{2} u\right)
\end{array}
$$

This has bee used when we assume $\nabla^{2} u(0)=$ id. clearly using orthogond transformation E can be put into
the form we claimed, But it does not change $\nabla^{2} u \|_{0}$ I
Now let $\quad y^{i}=\frac{x^{i}-x_{0}^{i}}{b_{i}} \Leftrightarrow x^{i}=b_{i} y^{i}+x_{0}^{i}$

$$
\begin{aligned}
& V V(y)=\lambda u\left(B y+x_{0}\right) \\
& \nabla^{2} v=B^{t_{r}}\left(\lambda \cdot \nabla^{2} u\right) B \Rightarrow \operatorname{det}\left(\nabla^{2} v\right)=\left(\prod_{i=1}^{n} b_{i}^{2}\right) \lambda^{n} \\
& \Rightarrow \quad \lambda^{n}=\frac{1}{\prod_{i=1}^{n}\left(b_{i}\right)^{2}}
\end{aligned}
$$

Now $v(-\underbrace{-1 x_{0}})=0$

$$
\begin{equation*}
\left.v\right|_{\partial \Omega}=\frac{\lambda a^{2}}{h^{\prime \prime}} \tag{x}
\end{equation*}
$$

Thin is the h in The. $\quad \Rightarrow \quad c_{1} \leqslant \lambda a^{2} \leqslant c_{2}$

$$
\begin{align*}
& \Leftrightarrow \quad c_{1} a^{-2} \leqslant \lambda \leqslant \quad c_{2} a^{-2} \\
& \text { on } S_{h / 2}=\left\{v \leqslant \frac{h}{2}\right\} \Leftrightarrow\left\{u \leqslant \frac{h}{2}\right\} \\
& \Leftrightarrow \quad\left\{u \leqslant \frac{a^{2}}{2}\right\} \\
& \underbrace{C_{1} I \leqslant \nabla^{2} v \leqslant C_{2} I}_{\Leftrightarrow c_{1} I \leqslant\left. B^{\dagger r} \lambda \nabla^{2} u\right|_{x=0} B \leqslant c_{2} I} \\
& \text { In particular } \Rightarrow \quad c_{1} I \leqslant \lambda B^{t_{r}} B \leqslant c_{2} I \Rightarrow c_{1} a^{2} \leqslant b_{i}^{2} \leqslant c_{2} a^{2} \\
& \text { at or } x=0{\widetilde{x_{0}}}_{\text {four }} \text { fur } \Leftrightarrow \quad c_{1} \leqslant \lambda b_{i}^{2} \leqslant c_{2}
\end{align*}
$$

$$
\begin{array}{cc}
\Rightarrow \quad C_{1}^{\prime} I \leqslant \nabla^{2} u \leqslant C_{2}^{1} I & \text { in }\left\{x \left\lvert\, u \leqslant \frac{a^{2}}{2}\right.\right\} \\
& S_{a / 2}^{u} 11
\end{array}
$$

$$
\text { (with radius } \left.\tilde{\tau}_{0} a\right)
$$

Thin put us into the situation of applying calabi's theorem.
precisely. (\nless) shows that E contains

$$
B_{k_{1} a}^{\left(x_{0}\right)} \quad \sum \frac{\left|x^{i}-x_{0}^{i}\right|^{2}}{b_{i}^{2}} \leqslant \sum \frac{\left|x^{2}-x_{0}^{i}\right|^{2}}{c_{1} a^{2}} \leqslant 1
$$

Also since $\underline{B_{\tau_{0}}\left(\tilde{x}_{0}\right)} \subset S_{h / 2}^{v}$
for some $\eta>0$ independent of a

Namely, Them provide the normalized situtation to obtain the needul estimates for JCP.

Now we focus on the proof of Thu.

$$
\begin{aligned}
& \Leftrightarrow\left\{y\left|\left|y-\tilde{x}_{0}\right| \leqslant \tau_{0}\right\} \subset S_{\frac{n}{2}}^{v}\right. \\
& \Leftrightarrow \underbrace{\left\{x\left|\left|B^{-1} x\right| \leqslant \tau_{0}\right\}\right.}_{y=B^{-1} x+\tilde{x}_{0}} \subset S_{\frac{a^{2}}{2}}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& C S_{a^{2} / 2}^{u}
\end{aligned}
$$

(III) Proof of The (u is the ore in The, rot in JCP).

We use (1), the Comparison principle 2, the Alexandrow maximum principle.
Pojorelovestincte
For (i). Apply $C P=$ to $\frac{1}{2}(\underbrace{\left.|x|^{2}-1\right)+h}_{u_{1}}$ \& u

$$
\begin{aligned}
& \Rightarrow \quad \text { on } \partial \Omega \quad u_{1} \leqslant u \Rightarrow \quad \min _{\partial \Omega}\left(u-u_{1}\right) \geqslant 0 \\
& \Rightarrow \quad u-u_{1} \geqslant 0 \text { in } \Omega \\
& \Rightarrow \quad u(x) \geqslant \frac{1}{2}\left(|x|^{2}-1\right)+h \\
& \begin{array}{c}
u\left(x_{0}\right) \\
n \\
0
\end{array} \quad h \leqslant \frac{1}{2}\left(1-\left|x_{0}\right|^{2}\right) \leqslant \frac{1}{2}
\end{aligned}
$$

Apply $C p_{2}$ to $\frac{1}{2} \underbrace{\left(|x|^{2}-\frac{1}{n^{k}}\right)}_{\pi}+h$ \& u

$$
\begin{aligned}
& \left.u_{2}\right|_{\partial \Omega} \geqslant\left. u\right|_{\partial \Omega} ^{\Rightarrow} u_{2} u_{2} \quad u_{2} \geqslant u \text { in } \Omega \\
& \Rightarrow \quad-\frac{1}{n_{n}^{k}+h \geqslant u(0)(\geqslant 0)} \\
& \Rightarrow \quad h \geqslant \frac{1}{2 n^{k}}
\end{aligned}
$$

For lii). We med the gradient estimate fur convex function

$$
\begin{gathered}
\left.\varphi \quad \varphi\right|_{\partial \Omega}=0 \\
\Rightarrow \quad \varphi(y) \geqslant \varphi(x)+\langle\nabla \varphi(x) \cdot y \cdot x\rangle
\end{gathered}
$$

\Rightarrow If we pick $y=x+\underbrace{\eta\left(\frac{\nabla g(x)}{\mid \nabla g(x)}\right)} \Rightarrow|\nabla g(x)| \leqslant \frac{\varphi(y)-\rho(x)}{\eta}$
As long a, such $y \in \Omega$
$\Rightarrow \operatorname{(2)~}_{\rightarrow|\nabla \varphi(x)| \leqslant \frac{-\varphi(x)}{\operatorname{list} t(\partial \Omega)} \text { by taking } \eta \text { to the limit }}$ of such possibility.

The keys still A. maximin principle:

$$
\left.(u-h)\right|_{\partial \Omega}=0
$$

$\& \forall x$

$$
\begin{align*}
& \underbrace{(h-u)^{n}(x) \leqslant}_{\partial \Omega} C D^{D^{n-1}} d(x, \partial \Omega) \underbrace{(|\partial u(\Omega)|}_{(D \leqslant 1} \tag{D,1}
\end{align*}
$$

Hence $\underbrace{\forall x \in} S_{y}$

$$
\left\langle\underline{\left(\frac{h}{2}\right)^{n} \leqslant(h-u)^{n} \leqslant C_{n} d\left(x, \partial S_{h}\right)}\right.
$$

$$
\Rightarrow \underbrace{\operatorname{dist}\left(S_{h / L}, \partial S_{h}\right)} \geqslant c^{+1}\left(\frac{h}{2}\right)^{n} \geqslant c(n)
$$

Similarly

$$
\operatorname{dist}\left(S_{n / 4}, \partial S_{k}\right) \geqslant c(n)
$$

Note that $X_{0} \in S_{n / 4}$

$$
\Rightarrow \quad B_{(m)}\left(x_{0}\right) \subset S_{4 / 2}
$$

$$
\Rightarrow \quad B_{c(n)}\left(x_{0}\right) \text { is }
$$ away from $\partial \Omega$.

Now Pogorelor Estimate

$$
\sup \left[\left(\frac{3}{4} h-u\right) u_{\alpha \alpha}\right] \leqslant C
$$

$$
\Rightarrow I_{n} \text { particular in } B_{(w)}\left(x_{-}\right) \subset S_{y / 2}
$$

$$
\operatorname{sip}\left[u_{\alpha \alpha}\right] \leqslant \frac{C}{\frac{3}{4} h-\frac{1}{2} h} \leqslant C
$$

Since $\prod_{i=1}^{n} u_{i i}=1 \Rightarrow$ the minimnmone $u_{p \beta} \geqslant C^{\prime}$

$$
\left[u_{\beta \beta}=\frac{1}{\prod_{j \neq \beta} u_{j j}} \geqslant\left(\frac{1}{c}\right)^{n-1}\right]
$$

This proves the uniform estimate in (iii).
The Hold estimate now follows from Evans' estimate G-T 17.4.

Next, we show how to prove Evans' estimate. The key is a Harnack estimate of Krylou-Safanow. [Only need the weaker form.]

Added: Affine transformation to cliagonalize $\left(U_{i j}\right)$
W.L.G. $\quad x_{0}=0$

$$
\begin{aligned}
& \left.\left(\nabla_{i j}^{2} u\right)\right|_{x_{0}=0}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \\
& B=\left(\begin{array}{cccc}
1 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1 n}}{a_{n}} \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & & 1
\end{array}\right) \\
& \left.\Rightarrow B^{t} \nabla_{i j}^{2} u\right|_{0} B=\left(\begin{array}{cccc}
1 & \cdots & 0 \\
0 & 0 & & 0 \\
\vdots & & A_{1}
\end{array}\right) \\
& \exists\left(\begin{array}{cc}
1 & 0 \\
0 & O_{1}
\end{array}\right) \doteqdot 0 \text { suchthat } 0_{1}^{t r} A, O \text { is }
\end{aligned}
$$

Now consich $V(x)=U(B O x)$

$$
\left.\left.\nabla^{2} v\right|_{0} \quad O^{t r} B^{t r} \nabla^{2} u B U\right|_{0}
$$

$\Rightarrow \quad=\quad$ diafond
In fact

$$
\begin{aligned}
& c=B O=\left(\begin{array}{cc}
1 & \alpha^{t_{r}} \\
0 & i d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 0_{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \alpha^{t v} 0_{1} \\
0 & 0_{1}
\end{array}\right) \Rightarrow \nabla_{11}^{2} v=\nabla_{11}^{2} u \\
& v_{1}=u_{1}
\end{aligned}
$$

Also $v_{1}=u_{1}$

