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In this paper, we prove a mean value formula for bounded subharmonic Hermitian

matrix valued function on a complete Riemannian manifold with nonnegative Ricci

curvature. As its application, we obtain a Liouville type theorem for the complex Monge–

Ampère equation on product manifolds.

1. Introduction

Understanding various spaces of harmonic functions on complete noncompact Rieman-

nian manifolds is one of the central questions in geometric analysis. During the last 40

years, there has been much significant progress in this question (see e.g., [7, 9, 17–20,

32, 34, 35], · · · ). More importantly, the techniques developed in this field are extremely

useful when applied to other problems in geometric analysis. In [18], Peter Li proved the

following theorem:

Theorem 1.1. (Theorem 2, [18]) Let (Mn, ω) be a complete Kähler manifold with non-

negative Ricci curvature and H1(M) be the space of linear growth harmonic functions
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854 C. Li et al.

on (Mn, ω). Then dimH1(M) ≤ 2n + 1. Moreover, if dimH1(M) = 2n + 1 then M must be

isometric to C
n with the standard flat metric.

In Peter Li’s proof of Theorem 1.1, the following mean value theorem for bounded

subharmonic functions plays an important role.

Theorem 1.2. (Lemma B, [18]) Let (M, g) be a complete manifold with nonnegative

Ricci curvature. Suppose f is a bounded subharmonic function defined on (M, g), then

for any p ∈ M

lim
r→∞ −

∫
Br(p)

f dVg = sup
M

f . (1)

Besides its application in [18], Theorem 1.2 has some more applications in

Riemannian geometry (see e.g., [9]). It is a useful tool in the study of linearly growth har-

monic functions on complete Riemannian manifolds with nonnegative Ricci curvature.

In this paper, we study a class of Hermitian matrix valued functions and estab-

lish a mean value theorem for them. For convenience, we denote the set of all m-order

Hermitian matrices by Hm(m), and equip it with the metric induced by the inner product

〈A, B〉 = tr AB
T

. (2)

Definition 1.3. A map A = (Aij) from a Riemannian manifold to Hm(m) is said to be

subharmonic, if for any vector ξ = (ξ1, · · · , ξm) ∈ C
m, ξAξ∗ = Aijξiξj is a subharmonic

function.

By the definition, it is easy to check that a C2 Hermitian matrix valued function

A = (Aij) on a Riemannian manifold is subharmonic if and only if �A = (�Aij)

is semi-positive-definite everywhere. We obtain the following mean value formula to

subharmonic Hermitian matrix valued functions.

Theorem 1.4. Let (M, g) be a complete Riemannian manifold with nonnegative Ricci

curvature, and A = (aij) be a bounded subharmonic Hermitian matrix valued function

on (M, g). Then there exists a Hermitian matrix A0, such that

A ≤ A0 (3)
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The Complex Monge–Ampère Equation 855

on M, and for any p ∈ M

lim
r→∞ −

∫
Br(p)

A dVg = lim
r→∞

(
−
∫

Br(p)

aij dVg

)
= A0. (4)

The complex Monge–Ampère equation has significant applications in complex

analysis and complex geometry, and much remarkable progress of complex Monge–

Ampère equation was made by many people (see e.g., [1–4, 6, 8, 10–13, 15, 16, 21, 23–30,

33, 36–38], etc.). In this paper, we concentrate on Liouville theorems for the complex

Monge–Ampère equation. In [22], Riebesehl and Schulz proved a Liouville theorem for

the complex Monge–Ampère equation on C
n, which can be expressed by Kähler forms as

follows.

Theorem 1.5. ([22]) Let ω be a Kähler form on C
n satisfying C−1ω0 ≤ ω ≤ Cω0 and

ωn = ωn
0 , where ω0 =

√−1
2

n∑
i=0

dzi ∧ dz̄i and C is a positive constant. Then ∇ω0
ω = 0, or

equivalently

ω =
√−1

2

n∑
i,j=1

Aijdzi ∧ dz̄j (5)

for some constant Hermitian matrix (Aij).

The key of the proof of Theorem 1.5 is a local Calabi C3 estimate, that is,

an estimate on |∇ω0
ω|2w. To study the analogous Liouville type theorems on Kähler

manifolds with nontrivial Riemannian curvatures should be meaningful (see e.g., [31]).

However, in these cases, the Calabi C3 estimate seems not to work. Recently, Hein

([14]) proved a Liouville theorem for the complex Monge–Ampère equation on product

manifolds, which can be restated in short as below.

Theorem 1.6. (Theorem A, [14]) Let (Y, ωY0
) be a compact Ricci-flat Kähler manifold,

and ω be a Ricci-flat Kähler form on C
m × Y. Assume C−1(ω

Cm + ωY0
) ≤ ω ≤ C(ω

Cm + ωY0
)

for some C > 1, where ω
Cm is the standard flat Kähler form on C

m. Then we can find some

Kähler form ωY on Y, Tl ∈ Auto(Cm ×Y) and complex linear map S ∈ Auto(Cm) such that

T∗
l ω = ωY + S∗ωCm .

In Hein’s proof of Theorem 1.6, one key step is to study the convergence property

of a sequence of subharmonic functions ut with respect to Kähler metrics ωt which are
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856 C. Li et al.

constructed from ω. In this paper, we consider the case that Ric(ωY0
) ≥ 0 and establish

the following Liouville theorem.

Theorem 1.7. Let (Yn, ωY0
) be an n dimensional compact Kähler manifold with non-

negative Ricci curvature, and ω be a Kähler form ω on C
m × Y with properties

1) C−1(ωCm + ωY0
) ≤ ω ≤ C(ωCm + ωY0

), for some positive constant C;

2) ωn+m = (ω
Cm + ωY0

)m+n,

where ω
Cm is the standard Kähler form on C

m. Then there exists a Kähler form ωY on Y

with Ric(ωY) = Ric(ωY0
) such that ∇ωCm+ωY

ω = 0. Furthermore, we have the following

representation of ω

ω = ω̂Cn + ωY + 1

2

m∑
i=1

(
dzi ∧ ηi + dz̄i ∧ ηi

)
, (6)

where ω̂
Cn = 1

2

m∑
i, j=1

uij̄dzi ∧ dz̄j with the constant Hermitian matrix
(
uij̄

)
, and every ηi is

a ωY-parallel (0,1)-form.

Taking the construction of ωY , Tl, and S in Theorem 1.6 ([14]) in consideration,

Theorem 1.7 can be seen as a generalization of Theorem 1.6. Our proof relies on

the above mean value formula (i.e., Theorem 1.4) and is very different with Hein’s.

Theorem 1.7 also can be seen as an application of the mean value formula (4). We hope

the mean value formula (4) has more applications in the study of Kähler geometry.

2. A Mean Value Formula for Bounded Subharmonic Hermitian Matrix Valued

Function

In this section, we first give a proof of Theorem 1.4 and then give a new proof to

Theorem 1.5 by using Theorem 1.4 instead of the Calabi C3 estimate.

A proof of Theorem 1.4. For any vector ξ ∈ C
m, define

||ξ ||2A = ξAξ∗. (1)

By this definition and the condition on A, for any fixed ξ ∈ C
m, ||ξ ||2A is a bounded

subharmonic function, then Theorem 1.2 implies

lim
r→∞ −

∫
Br(p)

||ξ ||2A = sup
M

||ξ ||2A. (2)
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The Complex Monge–Ampère Equation 857

For i = 1, 2, · · · , n, let ei be the i-th direction vector in C
n. We have

Aij = ||ei + ej||2A − ||ei − ej||2A
4

− √−1
||ei + √−1ej||2A − ||ei − √−1ej||2A

4
. (3)

Together with (2), we assert that lim
r→∞ −

∫
Br(p)

A exists. Let

A0 = lim
r→∞ −

∫
Br(p)

A. (4)

Then we know that for any ξ ∈ C
m, it holds that

ξAξ∗ = ||ξ ||2A ≤ lim
r→∞ −

∫
Br(p)

||ξ ||2A = ξA0ξ∗. (5)

This shows A ≤ A0. �

We obtain the following simple corollary.

Corollary 2.1. Let A : M → Hm(m) satisfy the same condition of Theorem 1.4 and

A0 = lim
r→∞ −

∫
Br(p)

A. Let F be a bounded function on some neighborhood of the closure of

A(M) and continuous at A0, then we have

lim
r→∞ −

∫
Br(p)

F(A) = F(A0). (6)

Proof. From the condition on F, we see that there exists a positive constant C such that

F(A) ≤ C (7)

on M. And for any ε > 0, we can find some δ > 0 such that for any q ∈ M satisfying

|A(q) − A0| ≤ δ, there holds

|F(A(q)) − F(A0)| ≤ ε. (8)

For the mentioned ε and δ, we have∫
Br(p)

|F(A) − F(A0)| =
∫

Br(p)∩{|A−A0|≤δ}
|F(A) − F(A0)| +

∫
Br(p)∩{|A−A0|>δ}

|F(A) − F(A0)|

≤ εVol(Br(p) ∩ {|A − A0| ≤ δ}) + CVol(Br(p) ∩ {|A − A0| > δ})
≤ εVol(Br(p)) + CVol(Br(p) ∩ {|A − A0| > δ}).

(9)
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By Theorem 1.4, A ≤ A0, so A0 = lim
r→∞ −

∫
Br(p)

A implies

lim
r→∞ −

∫
Br(p)

|A − A0| = 0. (10)

Together with

Vol(Br(p) ∩ {|A − A0| > δ}) ≤ δ−1
∫

Br(p)

|A − A0|, (11)

we derive

lim
r→∞

Vol(Br(p) ∩ {|A − A0| > δ})
Vol(Br(p))

= 0. (12)

Combining (9) and (12) yields

lim sup
r→∞

−
∫

Br(p)

|F(A) − F(A0)| ≤ ε. (13)

Let ε → 0, then we get

lim
r→∞ −

∫
Br(p)

|F(A) − F(A0)| = 0. (14)

This concludes the proof. �

By Therorem 1.4 and Corollary 2.1 we can give a new proof to Theorem 1.5.

A new proof of Theorem 1.5. We can write ω as

ω =
√−1

2

n∑
i,j=1

uij̄dzi ∧ dz̄j, (15)

where
(
uij̄

)
is a function valued in Hm(n). Denote

(
uij̄

) = (
uij̄

)−1, uij̄k = ∂

∂zk uij̄, uij̄kl̄ =
∂

∂zl uij̄k, etc. Since ω is closed, we have

uij̄k = ukj̄i, uij̄k̄ = uik̄j̄. (16)
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The Complex Monge–Ampère Equation 859

According to the equation ω satisfied, we deduce

det(uij̄) = 1. (17)

A direct computation shows

�ωuij̄ = ukl̄upq̄ukq̄iul̄pj̄. (18)

For any ξ = (
ξ1, ξ2, · · · , ξn

) ∈ C
n, consider the Hermitian quadratic form F : C3n ×C

3n →
R defined by

(A, B) �→ uiᾱuβ j̄ξkξγ AijkBαβγ . (19)

By choosing a proper frame on C
n, one can easily check that F is semi-positive-definite.

So

ξ i(�ωuij̄)ξ
j = uiᾱuβ j̄ξkξγ uij̄kuαβ̄γ ≥ 0. (20)

This means that (uij̄) is subharmonic. The condition on ω implies that (uij̄) is bounded

and (Cn, ω) is a complete Ricci flat Kähler manifold. Based on Theorem 1.4 and

Corollary 2.1, we can find a constant Hermitian matrix A such that

(
uij̄

) ≤ A (21)

on M and

lim
r→∞ −

∫
Bω

r (O)

det
(
uij̄

)
ωn = det A. (22)

From (17) and the previous equality, it holds that

det A = det
(
uij̄

) = 1. (23)

Since
(
uij̄

)
is positive-definite, the previous equality and (21) imply

(
uij̄

)
is the constant

function A. This concludes the proof. �
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Remark: 1) To prove
(
uij̄

)
is subharmonic, besides direct computations, we can also use

the following argument: for any ξ ∈ C
m, let Xξ = ξi

∂

∂zi , then

ξiuij̄ξj = 2|Xξ |2ω. (24)

Using the Bochner formula for holomorphic fields and the fact that Ric(ω) = 0, one can

easily check that ξiuij̄ξj is subharmonic.

2) To prove Theorem 1.5, one can also consider
(
uij̄

) = (
uij̄

)−1. For any ξ ∈ C
m,

let fξ = Re
(
ξiz

i
)
, then

ξiu
ij̄ξj = |dfξ |2ω. (25)

Clearly fξ is a pluri-harmonic function and hence a harmonic function with respect to ω.

Using the Bochner formula and the fact that Ric(ω) = 0 one can easily check that ξiu
ij̄ξj

is subharmonic.

3. A Liouville Theorem for the Complex Monge–Ampère Equation

In this section, we obtain a Liouville theorem for the complex Monge–Ampère equation

as an application of the mean value formula (4), that is, we give a proof of Theorem 1.7.

First we introduce the following lemma concerning the computation of determinant of

a block Hermitian matrix.

Lemma 3.1. Let M be an invertible Hermitian matrix. If

M =
(

A C

C∗ B

)
, M−1 =

(
Ã C̃

C̃∗ B̃

)
,

where A is invertible. Then

det M = det A det B̃−1.

Proof. Since A is invertible, we have

(
I O

−C∗A−1 I

) (
A C

C∗ B

) (
I −A−1C

O I

)
=

(
A O

O B − C∗A−1C

)
.
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The Complex Monge–Ampère Equation 861

This implies

det M = det A det(B − C∗A−1C). (1)

M is invertible, so B − C∗A−1C is also invertible. At the same time, we get

M−1 =
(

I −A−1C

O I

)(
A O

O B − C∗A−1C

)−1 (
I O

−C∗A−1 I

)
,

which implies

B̃ = (B − C∗A−1C)−1. (2)

The required equality is a combination of (1) and (2). �

A proof of Theorem 1.7. Let πY and π
Cm be the two projections:

πY : Cm × Y → Y, πY(z, y) = y, (3)

πCm : Cm × Y → C
m, πCm(z, y) = z. (4)

By Künneth’s formula (see e.g., Section 5 of [5]) and the result on the de Rham

cohomology groups of Cm

Hk
dR(Cm) =

⎧⎨⎩R, k = 0,

0, k ≥ 1,
(5)

there exists a closed real two-form 
 on Y, such that

[ω] = [
π∗

Y

]
, (6)

in the sense of de Rham cohomology classes. For any z ∈ C
n, denote the embedding from

Y to C
m × Y

y �→ (z, y), (7)
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by iz. For distinct z1, z2 ∈ C
m, since πY ◦ iz1

= idY = πY ◦ iz2
, we have

[
i∗z1

ω
] = [
] = [

i∗z2
ω

]
. (8)

Obviously all i∗zω are Kähler forms on Y, so (8) shows that all i∗zω are in the same Kähler

class. By Calabi–Yau theorem (see [36]), there is a unique Kähler form ωY in this Kähler

class satisfying Ric(ωY) = Ric(ωY0
) and consequently

ωn
Y = cωn

Y0
(9)

for some positive constant c.

Now we can write the conditions on ω as follows.

1) C−1(ωCm + ωY) ≤ ω ≤ C(ωCm + ωY), for some positive constant C;

2) ωn+m = c−1(ωCm + ωY)m+n;

3) for any z ∈ C
m, i∗zω and ωY are in the same Kähler class.

Denote by g0 and g the Riemannian metrics associated with ωCm + ωY and ω,

respectively, and let g−1 be the metric on T∗(Cm × Y) induced by g. Let
{
zi

}m
i=1 be the

standard complex coordinate system on C
m and for i, j = 1, 2, · · · , m, define

uij̄ = 1

2
g−1(

dzi, dz̄ j), uij̄ = 2g
(

∂

∂zi
,

∂

∂ z̄j

)
. (10)

For any point (z, y), we choose a complex normal coordinates system {zα}m+n
α=m+1 around

y with respect to ωY . Computing under the coordinate system {za}m+n
a=1 , we have

�ωuij̄ = ga1b1ga2b2gib3ga3 īga1b3a2
gb1a3b2

+ gib3ga3 j̄Ra3b3
, (11)

�ωuij̄ = ga1b1ga2b2ga1b2iga2b1 j̄, (12)

where gab̄, gab̄, gab̄c, Rab̄ are the coefficients of components of g−1, g, ∇g0
g, Ric(g0),

respectively, a, b, ak, bk = 1, 2, · · · , m + n (k = 1, 2, 3).

It is clear that for i, j = 1, 2, · · · , m, gij̄ = uij̄ and gij̄ = uij̄. Namely

(
gab̄

) =
(

uij̄ gαj̄

giβ̄ gαβ̄

)
,

(
gab̄) =

(
uij̄ gαj̄

giβ̄ gαβ̄

)
.

Furthermore,
(
uij̄

)
and

(
uij̄

)
are bounded and uniformly positive-definite.
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Clearly Ric(g0) ≥ 0, so (11) implies that
(
�ωuij̄

) ≥ 0, that is,
(
uij̄

)
is subharmonic

with respect to ω. Applying Theorem 1.4 and Corollary 2.1, we can find some constant

Hermitian matrix A such that

(
uij̄) ≤ A (13)

everywhere, and

lim
r→∞ −

∫
Bω

r (x0,z0)

det
(
uij̄)dVg = det A. (14)

One can see that there exists some sufficiently large constant C such that for r � diamY,

Br(z0) × Y ⊂ Bω
Cr(z0, y0) ⊂ BC2r(z0) × Y.

Hence it holds that

0 ≤
∫

Br(z0)×Y

(
det A − det

(
uij̄)) dVg0

≤ c
∫

Bω
Cr(x0,z0)

(
det A − det

(
uij̄)) dVg,

and

Volg0
(Br(z0) × Y) = C−4nVol

(
BC2r(z0) × Y

) ≥ C−4ncVolω
(
Bω

Cr(z0, y0)
)
.

Then we can obtain

0 ≤ −
∫

Br(z0)×Y

(
det A − det

(
uij̄)) dVg0

≤ C4n

(
−
∫

Bω
Cr(z0,y0)

(
det A − det

(
uij̄)) dVg

)
,

consequently

lim
r→∞ −

∫
Br(z0)×Y

det
(
uij̄) dVg0

= det A. (15)

Computing under the local coordinate system {za}m+n
a=1 mentioned above and applying

Lemma 3.1, we can check that

(
det

(
uij̄))−1

(
i∗zω

)n

ωn
Y

= ωn+m

(ωY + ω
Cm)m+n = c−1 (16)
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at any point (z, y). Then we have

−
∫

{z}×Y
det

(
uij̄)ωn

Y = −
∫

{z}×Y
c
(
i∗zω

)n = c. (17)

This tells us

−
∫

Br(z0)×Y
det(uij̄) dVg0

= c, (18)

for any z0 and r > 0. Together with (13) and (14), we deduce

det
(
uij̄) ≤ det A = c, (19)

and then

det
(
uij̄) = det A = c. (20)

Since (uij̄) is positive-definite, using (13) again, we obtain

(
uij̄) ≡ A. (21)

By (16), we have

(
i∗zω

)n = ωn
Y (22)

for any z ∈ C
m. We already know that i∗zω and ωY are in the same Kähler class, so

i∗zω = ωY . (23)

For any i = 1, 2, · · · , m, from (11) and (21), we derive

0 = �ωuiī ≥ C−1
m+n∑

a1,a2=1

|ga1 īa2
|2. (24)

(24) implies that uiī is a constant function, then consequently

0 = �ωuiī ≥ ga1b1ga2b2ga1b2iga2b1 ī ≥ C−1
m+n∑

a, b=1

|gab̄i|2. (25)
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That is to say
(
uij̄

)
is a constant matrix. At the same time, (23) implies

m+n∑
a=1

m+n∑
α,β=m+1

|gαβ̄a|2 = 0. (26)

Combining (24), (25), and (26) shows ∇g0
g = 0.

We define

ηi = i∗z
(

∂

∂zi �ω
)
, (27)

where z ∈ C
m, i = 1, 2· · · , m. Since ∇g0

g = 0, this definition doesn’t depend on the choice

of z and every ηi is an ωY-parallel (0,1)-form. The expression (6) can be easily checked

under a local coordinate system. This concludes the proof of Theorem 1.7. �

Funding

This work was supported by National Science Foundation (NSF) [11625106, 11571332, 11721101,

and 11526212] to C.L.,J.L. and X.Z.

References

[1] Aubin, T. “Equations du type de Monge-Ampère surles varietes Kähleriennes compactes.” C.

R. Acad. Sci. Paris. 283 (1976): 119–21.

[2] Bedford, E. and B. A. Taylor. “The Dirichlet problem for a complex Monge-Ampère operator.”

Invent. Math. 37 (1976): 1–44.

[3] Bedford, E. and B. A. Taylor. “Variational properties of the complex Monge-Ampère equation,

II. Intrinsic norms.” Amer. J. Math. 101 (1979): 1131–1166.

[4] Blocki, Z. “Interior regularity of the complex Monge-Ampère equation in convex domains.”

Duke Math. J. 105, no. 1 (2000) : 167–81.

[5] Bott, R. and L. W. Tu. Differential Forms in Algebraic Topology. Graduate Texts in

Mathematics, 82. New York-Berlin: Springer, 1982. xiv+331 pp. ISBN: 0–387-90613–4.

[6] Caffarelli, L., J. J. Kohn, L. Nirenberg and J. Spruck. “The Dirichlet problem for nonlinear

second-order elliptic equations. II. Complex Monge-Ampère and uniformly elliptic equa-

tions.” Comm. Pure Appl. Math. 38, no. 2 (1985): 209–52.

[7] Cheng, S. Y. and S. T. Yau. “Differential equations on Riemannian manifolds and their

geometric applications.” Comm. Pure Appl. Math. 28 (1975): 333–54.

[8] Cheng, S. Y. and S. T. Yau. “On the existence of a complete Kähler-Einstein metric on non-

compact complex manifolds and the regularity of Fefferman’s equation.” Comm. Pure Appl.

Math. 33 (1980): 507–44.

[9] Colding, T. H. and W. P. Minicozzi. “Linear growth harmonic functions on complete

manifolds with nonnegative Ricci curvature.” Geom. Funct. Anal. 5, no. 6 (1995): 948–54.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/3/853/4948408 by U
niversity of california san diego user on 12 June 2021



866 C. Li et al.

[10] Demailly, J. P. and N. Pali. “Degenerate complex Monge-Ampère equations over compact

Kähler manifolds.” Internat J. Math. 21, no. 3 (2010): 357–405.

[11] Dinew, S., X. Zhang, and X. W. Zhang. “The C2, α estimate of complex Monge-Ampère

equation.” Indiana Univ. Math. J. 60, no. 5 (2011): 1713–22.

[12] Guan, B. “The Dirichlet problem for complex Monge-Ampère equations and regularity of the

pluricomplex Green’s function.” Comm. Anal. Geom. 8 (2000): 213–8.

[13] Guan, P. F. “The extremal function associated to intrinsic norms.” Ann. Math. (2) 156, no. 1

(2002): 197–211.

[14] Hein, H.-J. A Liouville theorem for the complex Monge-Ampère equation on product

manifolds. Preprint arXiv:1701.05147.

[15] Kobayashi, R. “Kähler-Einstein metrics on an open algebraic manifold.” Osaka J. Math. 21

(1984): 399–418.

[16] Kolodziej, S. “The complex Monge-Ampère equation.” Acta Math. 180 (1998): 69–117.

[17] Li, P. “Large time behavior of the heat equation on complete manifolds with nonnegative

Ricci curvature.” Ann. Math. (2) 124, no. 1 (1986): 1–21.

[18] Li, P. “Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci

curvature.” Math. Res. Lett. 2, no. 1 (1995): 79–94.

[19] Li, P. and R. Schoen. “Lp and mean value properties of subharmonic functions on Riemannian

manifolds.” Acta Math. 153 (1984): 279–301.

[20] Li, P. and L. F. Tam. “Linear growth harmonic functions on a complete manifold.” J. Diff.

Geom. 29 (1989): 421–5.

[21] Mok, N. and S. T. Yau. “Completeness of the Kähler-Einstein metric on bounded domains

and the characterization of domains of holomorphy by curvature conditions.” Proc. Symp. in

Pure Math. 39 (1983): 41–59.

[22] Riebesehl, D. and F. Schulz. “A priori estimates and a Liouviile theorem for complex Monge-

Ampère equations.” Math. Z. 186 (1984): 57–66.

[23] Tian, G. “On the existence of solutions of a class of Monge-Ampère equations.” Acta Math.

Sin. 4 (1988): 250–65.

[24] Tian, G. “On Calabi’s conjecture for complex surfaces with positive first Chern class.” Invent.

Math. 101, no.1 (1990): 101–72.

[25] Tian, G. “Kähler-Einstein metrics with positive scalar curvature.” Invent. Math. 130, no. 1

(1997): 1–37.

[26] Tian, G. and S. T. Yau. “Existence of Kähler-Einstein metrics on complete Kähler manifolds

and their applications to algebraic geometry.” Mathematical aspects of string theory (San

Diego, Calif., 1986), 574–628, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987.

[27] Tian, G. and S. T. Yau. “Kähler-Einstein metrics on complex surfaces with c1(M) positive.”

Comm. Math. Phys. 112 (1987): 175–203.

[28] Tian, G. and S. T. Yau. “Complete Kähler manifolds with zero Ricci curvature I.” J. Amer.

Math. Soc. 3 (1990): 579–609.

[29] Tian, G. and S. T. Yau. “Complete Kähler manifolds with zero Ricci curvature II.” Inventiones

Math. 106 (1991): 27–60.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/3/853/4948408 by U
niversity of california san diego user on 12 June 2021



The Complex Monge–Ampère Equation 867

[30] Tosatti, V., B. Wenkove, and S. T. Yau. “Taming symplectic forms and the Calabi-Yau

equation.” Proc. Lond. Math. Soc. (3). 97, no. 2 (2008): 401–24.

[31] Tosatti, V. and Y. Zhang. “Infinite-time singularities of the Kähler-Ricci flow.” Geometry and

Topology. 19 (2015): 2925–48.

[32] Wang, J. P. Linear growth harmonic functions on complete manifolds. Comm. Anal. Geom.

3, no. 3–4 (1995): 683–98.

[33] Wang, Y. “On the C2, α-regularity of the complex Monge-Ampère equation.” Math. Res. Lett.

19, no. 4 (2012): 939–46.

[34] Yau, S. T. “Harmonic functions on complete Riemannian manifolds.” Comm. Pure Appl. Math.

28 (1975): 201–28.

[35] Yau, S. T. “Some function-theoretic properties of complete Riemannian manifolds and their

applications to geometry.” Indiana Math. J. 25 (1976): 659–70.

[36] Yau, S. T. “On the Ricci curvature of a compact Kähler manifold and the complex Monge-

Ampère equation.” Comm. Pure Appl. Math. 31 (1978): 339–411.

[37] Zhang, Z. “On degenerate Monge-Ampère equations over closed Kähler manifolds.” Int. Math.

Res. Not. (2006): Art. ID 63640, 18.

[38] Zhang, X. and X. W. Zhang. “Regularity estimates of solutions to complex Monge–Ampère

equations on Hermitian manifolds.” J. Funct. Anal. 260, no. 7 (2011): 2004–26.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/3/853/4948408 by U
niversity of california san diego user on 12 June 2021


	A Mean Value Formula and a Liouville Theorem for the Complex Monge--Ampere Equation
	1. Introduction
	2. A Mean Value Formula for Bounded Subharmonic Hermitian Matrix Valued Function
	3. A Liouville Theorem for the Complex Monge--Ampere Equation


