
Lecture 3 – Tensors, Two Derivatives and (baby) Lie Groups by L. Ni

First we prepare some algebraic preliminaries for the later study of the differential geom-
etry. More details can be found for example in Sakai’s book.

Let V be a n-dimensional vector space. For M a smooth manifold, let TpM be the tangent
space at p, and let T ∗pM be the cotangent space, which is the dual of TpM . In the discussion
we identify V with TpM , V ∗ the dual with T ∗pM . To understand the tensor fields we need
to start with the construction of tensor products. If W is another linear vector space, then
V ⊗W is defined as the linear space spanned either linear maps W ∗ → V or as a bilinear
form on V ∗ ×W ∗ defined for any v ∈ V,w ∈W as below:

v ⊗ w(w∗1) = w∗1(w)v; v ⊗ w(v∗1 , w
∗
1) = v∗1(v)w∗1(w).

We also write v∗(v1) as 〈v1, v∗〉 abusing the notation. Inductively the tensor product V ⊗
· · · ⊗V ⊗V ∗⊗ · · · ⊗V ∗ can be defined. This is denoted as T rs (V ) if there are r components
of V and s components of V ∗. The tensor bundle T rs (M) is defined to be the total space
of ∪p∈MT rs (Tp(M)). The space of smooth sections of these bundles are denoted by T rs (M).
A linear isomorphism between vector spaces φ : V → W naturally extends to the tensor
products T rs (V )→ T rs (W ), which we denote by φ̃.

Exterior product ∧p(V ) is defined as the skew symmetric multilinear forms on V ×· · ·×V
as below for x∗1, · · · , x∗p ∈ V ∗ as

x∗1 ∧ · · · ∧ x∗p(x1, · · · , xp) =
∑
σ

sgn(σ)x∗σ(1)(x1) · · ·x∗σ(p)(xp) = det(x∗i (xj)).

Note that ∧p(V ) ⊂ T 0
p (V ). Similarly we define ∧p(V ) as the skew symmetric multilinear

forms on V ∗ × · · · × V ∗. The space ∧k(TpM) and ∧k(M) = ∪p ∧k (TpM) is often used.
The space of the smooth sections are called k-forms and denoted Ωk(M). Clearly ∧1(M) =
T ∗(M).

We use the convention that {ei} and {ej} are the basis of V and V ∗ dual to each other.
If ẽi = aki ek, it is easy to see that the dual ẽj = bjl e

l with (bjl ) = (aki )−1. If A : V → W is
an isomorphisms it is easy to see if we define A∗ : W ∗ → V ∗ as A∗(w∗)(v) = w∗(A(v)), in
terms of the basis A∗ is the transpose of A. The induced map V ∗ →W ∗ would be (A∗)−1.

In the case V is endowed with a metric {ei} and {ej} are assumed to be a orthonormal
basis. The metric extends naturally to T rs (V ) and ∧k(V ). The convention is that {ei1 ∧
· · · ∧ eik} for all1≤i1<···<ik≤n and {ej1 ∧ · · · ∧ ejl} for all1≤j1<···<jl≤n are orthonormal basis

of ∧k(V ) and ∧l(V ). In particular,

‖x1 ∧ · · · ∧ xk‖2 = det(〈xi, xj〉).

Note that here Binet-Cauchy theorem yields a generalized Pythagorean theorem if we view
the left hand side as the square of the k-dimensional volume of the parallelepiped generated
by the vectors {x1, · · · , xk}. (It says that such a square equals the sum of the squares of
projections in all k-dimensional subspaces, with respect to any orthonormal basis.)

Secondly we consider two derivatives. Recall for any smooth function f , df |p is defined as
the linear functional of TpM acting as

df(v) =
d

dt

∣∣∣∣
t=0

f(c(t)), with c(0) = p, ċ(0) = v. This is also denoted as Lvf.
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In local coordinate df = ∂f
∂xi dx

i. The exterior differentiation extends to Ωk(M) (in fact on
germs of such) as follows: if ω = adxi1 ∧ · · · dxik , dω = da ∧ dxi1 ∧ · · · dxik . For general
ω = ai1···ikdx

i1 ∧ · · · dxik it extends linearly. It then can be easily checked that ω = α ∧ β,
dω = dα ∧ β + (−1)kα ∧ dβ if α ∈ Ωk(M).

Another important derivative is the Lie derivative on tensors (in particular for forms).
Given a vector field X for any smooth function f(x), (LXf)(x) + LX(x)f . By ODE, X
generated a one parameter family diffeomorphisms ϕ(t, p) (also denoted by ϕt when there is
no confusion) which satisfies that ϕ(0, p) = p. It then induces the map between the germs
of smooth functions dϕ̃−t : Fϕt(p) → Fp by the dϕ̃−t(f)(x) = f(ϕt(x)). Clearly (Xf)(p) =
d
dt |t=0dϕ̃−t(f). Since dϕ̃−t can be extended to Tϕt(p)M → TpM as (dϕt)

−1 = dϕ−t and
then to T ts(Tϕt(p)M)→ T rs (TpM). Similarly the Lie derivative LXT is defined as

LXT =
d

dt
dϕ̃−t(T )

∣∣∣∣
t=0

.

It can be easily checked that this derivative is compatible with the contraction and satisfies
the Leibniz rule. In fact if T = Y ⊗ Z∗, LX(C1

1 (T ))|p = X(〈Y,Z∗〉)|p which equals to

I = lim
t→0

1

t

(
〈Yϕt(p), Z

∗
ϕt(p)
〉 − 〈Yp, Z∗p 〉

)
= lim
t→0

1

t
〈(dϕ̃−t(Yϕt(p)), dϕ̃−t(Z

∗
ϕt(p)
〉 − 〈Yp, Z∗p 〉.

One the other hand C1
1 (LX(T )) = C1

1 (LXY ⊗ Z∗ + Y ⊗ LXZ∗) = 〈LXY, Z∗〉+ 〈Y, LXZ∗〉.
The first term can be written as

〈LXY,Z∗〉 = lim
t→0

1

t
〈dϕ̃−t(Yϕt(p))− Yp, Z

∗
p 〉 = I + lim

t→0

1

t
〈dϕ̃−t(Yϕt(p)), Z

∗
p − dϕ̃−t(Z∗ϕt(p)

〉.

The second term above equals −C1
1 (Y ⊗ LXZ∗), hence this proves the claim that the Lie

derivative is commutative with the contraction.

Lemma 0.1. (i) For any vector fields X,Y then LXY = [X,Y ]. (ii) For any ω ∈ Ωp(M)
(or a local germ),

(1) LX = d ◦ ιX + ιX ◦ d.

Here ιX : ∧k+1(V ) → ∧k(V ) is defined as ιX(ω)(X1, · · · , Xk) = ω(X,X1, · · · , Xk). Since
x∗1 ∧ · · · ∧ x∗k =

∑
σ sgn(σ)x∗σ(1) ⊗ · · · ⊗ x

∗
σ(k), ιX can be obtained from ιX : T 0

k (V ) → T 0
k−1

defined as ιX(T ) = C1
1 (X ⊗ T ), where C1

1 is the contraction operator (at position (1, 1)).

Proof. (i). Let ϕt, ψs be the group generated by X and Y respectively. For any smooth f
we have [X,Y ]f = XY f − Y Xf . Hence

(XY f)p − (Y Xf)p =
∂

∂t

∂

∂s
[f(ψs(ϕt(p)))− f(ϕt(ψs(p)))]

∣∣∣∣
t=0,s=0

.

On the other hand (LXY )(q) = limt→0
1
t [dϕ−t(Y (ϕt(q)))− Y (q)], which however also

equals to limt→0
1
t [Y (ϕt(q))− dϕt(Y (q))]. Hence

(2) (LXY )f = lim
t→0

1

t

[
∂

∂s

∣∣∣∣
s=0

(f(ψs(ϕt(p)))− f(ϕt(ψs(p))))

]
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which proves the claimed result.

To prove (ii), it suffice to check that PX + d ◦ ιX + ιX ◦ d is a derivation and it equals
LX on the 1-forms, in fact sufficiently on ω = dxi. Both of them can be checked via direct

calculations. In fact (LXω)(Y ) = X(ω(Y )) − ω(LXY ) = X(Y i) − [X,Y ]i = X l ∂Y i

∂xl −(
X l ∂Y i

∂xl − Y l ∂X
i

∂xl

)
= Y l ∂X

i

∂xl . On the other hand for ω = dxi, [d ◦ ιX + ιX ◦ d(ω)] (Y ) =

Y (ω(X)) = Y l ∂X
i

∂xl .

To check that PX is a deviation we need to check (a) PX(fω) = X(f)ω + fPX(ω) and
(b) PX(α ∧ β) = PX(α) ∧ β + α ∧ PX(β). For (a), it is easy to check that ιX(df ∧ ω) =
X(f)ω − df ∧ ιXω. This implies (a) by easy computations. For (b) we extends the above
identity to ιX(α ∧ β) = (ιX(α)) ∧ β + (−1)kα ∧ ιX(β) for α ∈ ∧k(V ) and β ∈ ∧l(V ). It
suffices to verify this identity for α = dxi1 ∧ · · · ∧ dxik and β = dxik+1 ∧ · · · ∧ dxik+l , which
can be done with the following observation:

ιX(α ∧ β) =

k+l∑
t=1

(−1)t−1X(xit)dxi1 ∧ · · · ˆdxit ∧ dxik+l .

The claim (b) then follows by straight forward calculations. �

Corollary 0.1. (i) ψs and ϕt is commutative if and only if [X,Y ] = 0. (ii) For ω ∈ Ωk(M)
and vector fields X0, · · · , Xk,

dω(X0, · · · , Xk) =

k∑
i=0

(−1)iXi(ω(X0, · · · , X̂i, · · · , Xk))(3)

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xk).

Proof. The part (i) follows from the above proof, the part (ii) can be done via the induction
and we leave this as an exercise. In fact, by the proof (precisely (2)) if ϕt commutes with
ψs it is easy to see that LXY f = 0 for any f , hance LXY = 0. On the other hand, if
LXY = 0, d

dt (dϕ−t(Y (ϕt(q)))) = 0. Hence dϕ−t(Y (ϕt(q))) = Y (q) for any q. This implies
that ϕ−t(ψs(ϕt(q))) = ψs(q) by the uniqueness of the integrations of Y .

For part (ii), clearly the result holds for k = 0. For k = 1, dω(X0, X1) = ιX0
dω(X1) =

(LX0
ω)(X1)− (d(ιX0

ω))(X1) = X0(ω(X1))− ω(LX0
X1)−X1(ω(X0)). Inductively,

dω(X0, X1, · · · , Xk) = (ιX0dω)(X1, · · · , Xk) = (LX0ω − d ◦ ιX0(ω))(X1, · · · , Xk)

= X0(ω(X1, · · · , Xk))−
k∑
j=1

ω(X1, · · · , [X0, Xj ], · · · , Xk)

−
k∑
i=1

(−1)i−1Xi(ιX0
ω(X1, · · · , X̂i, · · · , Xk))

−
∑

1≤i<j≤k

(−1)i+jιX0
ω([Xi, Xj ], X1, · · · , X̂i, · · · X̂j , · · · , Xk).

Rewrite some of the terms and collect them properly we have the claim. �
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Thirdly we include some very basics for Lie groups. A Lie group G is defined to be a
manifold with smooth group structure. By the definition the map G × G → G defined as
(a, b) → ab−1 is smooth. Hence La(g) = ag and Ra(g) = ga are smooth mappings. For
any Xa ∈ TeG, dLa(Xe) defines a smooth vector field on G which is left invariant. Then
introduce the Lie algebra structure [x, y] = [X,Y ] where x, y ∈ TeG and X,Y are the left
invariant extensions of x, y. TeG endowed with this structure is called Lie algebra of G,
which is denoted by g. If X is a left invariant vector field, let ϕt(p) be the integration of
X and ϕt(e) be the 1-parameter subgroup. (Due to that ϕt(a) = aϕt(e).) We also write
ϕt(e) = exp(tX). (Exponential map for Lie groups). There is a nature representation of
G as a linear transformation of g. For a define AdG(g) = aga−1. Then d(AdG)|e is a
general linear transformation of g, which we denote as Adg. Conventionally we write it as
Ad : G → GL(g). This is called the adjoint representation of G. Its differential at TeG is
denoted by ad : g→ g.

Lemma 0.2. For X,Y , left invariant vector fields.

[X,Y ]e =
d

dt

∣∣∣∣
t=0

Ad(exp(tX))(Ye).

Namely ad(x)(y) = [x, y].

Proof. Note ϕt(p) = Rexp(tX)(p). By the previous lemma [X,Y ]e = d
dt |t=0(dϕ−t(Yϕt(p)) =

d
dt |t=0dRexp(−tX)(Yϕt(p)) = d

dt |t=0dRexp(−tX)dLexp(tX)(Ye) = d
dt |t=0Ad(exp(tX))(Ye), which

by the definition equals to ad(Xe)(Ye). �

Lemma 0.3. If ρ : G1 → G2 is a Lie group homeomorphism

ρ(exp(X)) = exp(dρ(X)).

Proof. Observe that ρ(exp(tX)) is a 1-parameter sub-group with tangent being dρ(X) at e.
Hence the result follows. �

Corollary 0.2. Applying the above to Ad : G→ GL(g) we have

(4) AdG(exp(tX)) = exp(tad(X)).

Exercises: 1. Let ϕt(p) and ψs(p) be the integrations of vector fields X,Y . Prove that the
tangent of ψ−

√
t(ϕ−

√
t(ψ
√
t(ϕ
√
t(p)))) is [X,Y ].

2. Let ϕt and ψs be the one parameter family diffeomorphisms generated by X and Y .
Define g1(c) = ϕc(p), g2(c) = ψc(g1(c)), g3(c) = ϕ−c(g2(c)) and g4(c) = ψ−c(g3(c)). Let
h(t) = g4(t) and g(t2) = h(t). Then for any smooth germ f

[X,Y ]p(f) = lim
t→0+

f(g(t))− f(p)

t
=

1

2
(f(h(t))′′(0).

3. For X,Y ∈ g, prove exp(ts[X,Y ]) = exp(sX) exp(tY ) exp(−sX) exp(−tY ) + o(st).
Hence if X̃, Ỹ are vector fields on M induced by ϕt = exp(tX) and ψt = exp(tY ), by
exercise 1 [X̃, Ỹ ] is induced by −[X,Y ].
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Lecture 4 – Connexion, Holonomy and Covariant Derivatives by L. Ni

A fiber bundle is a triple (E,F,M) with a projection map p : E → M such that p is
regular with p−1(x) being diffeomorphic to F such that for any point p ∈ M , there exists
Uα and ϕ : Uα × F → p−1(Uα) such that ϕ(x, f) ∈ p−1(x). We say it has a structure group
G, if the transition functions Tαβ(x) (where ϕ−1β ◦ ϕα(x, f) = (x, Tαβ(x)(f)) is in G. For
example (TM,Rn,M) is the tangent bundle with the transition group being GL(Rn). If M
is endowed with a Riemannian metric (TM,Rn,M) can have a structure group of O(n). For
vector bundles of dimension k we can define its tensor bundles and exterior product bundles
(the structure group will be the corresponding representation of GL(Rn) or O(n) acting on
the corresponding tensor products). This general formulation admits a lot more cases. One

example is (M̃, F,M) with M̃ being a covering of M , F being the discrete set of isolated
points can be viewed as a very special case. For this the structure group is σ(π1(M)), the
monodromy group of the covering (with σ : π1(M)→ the permutation group of the discrete
sets F ). Another is the principle bundle, with F being a Lie group G with the structure
group being G acting by the left multiplication.

A connexion of (E,F,M) is for any piece-wisely smooth path γ : (0, 1)→M , there exists
ϕγ : Fγ(0) → Fγ(1) such that it satisfies that ϕ depends on γ smoothly, and ϕγ1◦γ2 = ϕγ1◦ϕγ2
and ϕγ−1 = (ϕγ)−1. Such ϕγ is called the parallel transport along γ. In general ϕ is in
Diff(F ), but in specific cases it lies inside the structure group G correspondingly.

These concepts can be pushed further into the case of that (E,M) being topological spaces
and p being continuous and having path-lifting and covering homotopy properties (called a
Serre fibration). There one has correspondingly concept of a homotopy connexion, which is
a homotopy equivalence of the fibers p−1(γ(0)) and p−1(γ(1)). E.g. the covering spaces are
ones where the homotopy connexion is defined by lifting pathes.

Let Ω(x0,M) be the loop spaces at x0. Then ϕγ is a homomorphism ϕ : Ω(x0,M) →
Diff(Fx0

) (or G). Then the image (denoted by Hx0
) is called the holonomy group. For

covering spaces, this is just the monodromy (namely the representation of π1(M) in the
permutation of the fiber). For most discussion emphasizes are given to the image of the
connected component of the trivial loop γ(t) ≡ x0, namely the loops which are homotopically
trivial. This is called the relative holonomy group, denoted by H0

x0
. It is easy to see that for

a different choice of the base point x1, if γ is a path from x0 to x1, then Hx0
= ϕγ−1Hx1

ϕγ .

A covariant derivative at point p is a map ∇ : TpM × TpM → TpM (TpM germs of
tangent vectors) satisfying axioms: (i) ∇αξ+βηY = α∇ξY + β∇ηY ; (ii) linear in the second
component; (iii) ∇ξ(fY ) = (ξf)Y + f∇ξY . This is also called an affine connection. The
covariant derivative is a concept more linear than the Lie derivative since for smooth vectors
X,Y and function f , ∇fXY = f∇XY , a property fails to hold for the Lie derivative. A
global affine connection is the one defined for all p ∈ M satisfying that if X,Y are smooth
∇XY is smooth. Once M is endowed with a global affine connection we can define the
covariant derivative along a curve c(t) : (a, b)→M (even along a smooth map φ,N →M)
for a vector field X(t) along c(t) by D

dtX(c(t)) = ∇ċ(t)X, if X is defined globally near c(t).
This leads to the connexion defined above via the concept of parallel transport along c(t).
For any Xx0 ∈ Tx0M and a curve γ(t) with γ(0) = x0 and γ(1) = x1, X(t) ∈ Tγ(t)M

can be constructed by solving the ODE D
dtX(t) = 0. Then define ϕγ(X(0)) = X(1). We

extends the definition to ϕt1,t2γ : Tγ(t1)M → Tγ(t2)M as ϕt1,t2γ (ξ) = X(t2) if X is parallel
with X(t1) = ξ. Note that the above discussion makes sense for a smooth vector bundle
(E,M) of rank k. A basic result below asserts that a connexion on a vector bundle (with
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linear structure group) is equivalent to an affine connection.

Lemma 0.1.
D

dt
X(t)

∣∣∣∣
t0

= lim
t→t0

ϕt,t0γ (X(t))−X(t0)

t− t0
.

As before we can extends the covariant derivative to the whole tensor spaces T rs (M) and
show that it preserves the type and commutes with the contraction. Once there exists an
affine connection one can define the geodesics by requiring the curve c(t) satisfies Dċ

dt = 0.
Note that the concept of the geodesic is a bit nonlinear, which only makes sense for affine
connections on TM .

On a Riemannian manifold, there exists a canonical affine connection called Levi-Civita
connection ∇. A Levi-Civita satisfies two more requirements. (i) It is torsion free (namely
for any smooth vector fields X,Y , [X,Y ] = ∇XY − ∇YX); (ii) and it is compatible with
the metric (namely X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇Y Z〉). The induced connexion of a metric
compatible connection is the parallel transports in O(n).

Lemma 0.2. Let ∇ be a torsion free connection. For ω ∈ Ωk(M),

(1) dω(X0, X1, · · · , Xk) =

k∑
i=0

(−1)i(∇Xiω)(X0, · · · , X̂i, · · · , Xk).

Proof. Note that the right hand side above, using that the covariant derivative is commuting
with the contraction, can be written as

k∑
i=0

(−1)i

Xi(ω(X0, · · · , X̂i, · · ·Xk)−
∑
j

ω(X0, · · · X̂i, · · · ,∇Xi
Xj , · · · , Xk)


where the second term the summation is for j 6= i, 0 ≤ j ≤ k and the ∇Xi

Xj can appear
before the i-th term.

On the other hand, by Corollary 1 of last lecture we know that first summand of the
right hand side (in Corollary 1) matches the first term above. The second summand can be
written as ∑

0≤i<j≤k

(−1)i+jω(∇Xi
Xj −∇Xj

Xi, X0, · · · , X̂i, · · · , X̂j , · · · , Xk)

=

k∑
i=0

(−1)i−1
∑
j>i

ω(X0, · · · , X̂i, · · · ,∇Xi
Xj , · · · , Xk)

+

k∑
i=0

(−1)j−1
∑
j>i

ω(X0, · · · ,∇XjXi, · · · , X̂j , · · · , Xk).

Putting them together we have the claim. �

One may view the right hand side as a derivative d∇ induced by the covariant derivative
on the forms. We remark that equation (1) holds for any 1-forms ω implies that ∇ is torsion
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free. Namely

0 = (d∇ − d)α(X,Y ) = ∇Xα(Y )−∇Y α(X)− dα(X,Y )

= X(α(Y ))− α(∇XY )− Y (α(X)) + α(∇YX)−X(α(Y )) + Y (α(X)) + α([X,Y ])

= α([X,Y ]−∇XY +∇YX).

This implies the connection is torsion free. The lemma simply states that it coincides with
the exterior derivative if the affine connection is torsion free.

The torsion of an affine connection is defined as T (x, y) = − (∇XY −∇YX − [X,Y ]), with
X,Y being the extension of x, y ∈ TpM , which can be easily checked to be a tensor and
skew-symmetric. The curvature tensor R is defined to be for any x, y, z ∈ TpM , Rx,yz =
−∇X∇Y Z + ∇Y∇XZ + ∇[X,Y ]Z with X,Y, Z being extensions of x, y, z. Generally for
vector bundle (E,M) we may denote D as the connection and define similarly Rx,ys =
−DXDY s + DYDXs + D[X,Y ]s and check that it does not depend on the extension of s.
It can be checked that Rx,ys = −Ry,xs. Both can be defined for connexions of principal
bundles (which probably goes back to Cartan, see the paper of Ambrose-Singer).

If ∇ is torsion free on TM then R satisfies the 1-st Bianchi identity:

(2) Rx,yz + Ry,zx+ Rz,xy = 0.

In fact for X,Y, Z extensions of x, y, z we have

Rx,yz + Ry,zx+ Rz,xy = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z −∇Y∇ZX +∇Z∇YX
+∇[Y,Z]X −∇Z∇XY +∇X∇ZY +∇[Z,X]Y

= −∇X [Y, Z] +∇Y [X,Z] +∇Z [Y,X] +∇[X,Y ]Z

+∇[Y,Z]X +∇[Z,X]Y

= [[Y,Z], X] + [[Z,X], Y ] + [[X,Y ], Z] = 0.

Note that this and the above lemma on the exterior derivative only make sense for affine
connections on TM the tangent bundle.

The next two results however holds for general affine connections on vector bundles. Note
that R can be viewed as a section of ∧2(M)⊗E∗⊗E. Then DxRy,z can be defined if there
exists ∇ on TM .

The curvature of a torsion free affine connection also satisfies the 2-nd Bianchi idenity:

(3) DxRy,z +DyRz,x +DzRx,y = 0.

The proof (we only present for the case E = TM) is quite similar to the above. Note that
∇xRy,z is defined independent of the extensions X,Y, Z and W . Precisely

(DXRY,Z)W = DX(RY,ZW )− RY,Z(DXW )− R∇XY,ZW − RY,∇XZW

= DX(−DYDZW +DZDYW )− (−DYDZDXW +DZDYDXW )

+DXD[Y,Z]W −D[Y,Z]DXW − R∇XY,ZW − RY,∇XZW.

The claimed result follows by summing the three equations obtained by permuting X,Y, Z
above. Note that DXD[Y,Z]W −D[Y,Z]DXW +DYD[Z,X]W −D[Z,X]DYW +DZD[X,Y ]W −
D[X,Y ]DZW = −(RX,[Y,Z] + RY,[Z,X] + RZ,[X,Y ])W + D[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]]W, which
equals to −(RX,[Y,Z] + RY,[Z,X] + RZ,[X,Y ])W , by the Jacobi identity on [·, ·].
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Note that the proof works if D is an affine connection on a vector bundle E. This can also
be obtained via the exterior derivative dD defined on differential forms valued in E (See
L+4). Next is a useful commutator formula on any tensors.

For any T ∈ T rs (M) we define invariantly the second derivative

∇2
Y,XT (·) + ∇2T (·, X, Y ) = ∇Y (∇T )(·, X)

= Y (∇T (·, X))−∇T (∇Y (·), X)−∇T (·,∇YX)

= Y (∇XT (·))−∇XT (∇Y (·))−∇∇YXT (·) = ∇Y∇XT (·)−∇∇YXT (·).

Lemma 0.3. Let T ∈ T rs (M) and ∇ be a torsion free affine connection. Then

(4) ∇2
Y,XT −∇2

X,Y T = RX,Y ◦ T, equivalently RX,Y (T ) = RX,Y ◦ T,

where RX,Y (T )(·) = −∇X∇Y T (·)+∇Y∇XT (·)+∇[X,Y ]T (·), and RX,Y ◦ means that RX,Y :
TpM → TpM acts on the tensor product as an algebraic derivation.

Proof. First for W ∗ ∈ T 0
1 , (∇XW ∗)(Z) = X(W ∗(Z))−W ∗(∇XZ), Hence

(∇Y∇XW ∗)(Z) = Y ((∇XW ∗)(Z))− (∇XW ∗)(∇Y Z)

= Y X(W ∗(Z))− Y (W ∗(∇XZ))−X(W ∗(∇Y Z)) +W ∗(∇X∇Y Z).

Hence if extends X,Y with [X,Y ] = 0 we have that

(∇Y∇XW ∗)(Z)− (∇X∇YW ∗)(Z) = −W ∗(RX,Y Z) = [−(RX,Y )∗(W ∗)] (Z).

Namely ∇2
Y,XW

∗−∇2
X,YW

∗ = ∇Y∇XW ∗−∇X∇YW ∗ = −(RX,Y )∗(W ∗). This proves the

result for the special case T ∈ T 0
1 . The general case follows by a similar argument. Precisely

(∇Y (∇XT ))(W ∗1 , · · · ,W ∗r , X1, · · · , Xs) = Y X(T (W ∗1 , · · · ,W ∗r , X1, · · · , Xs))

−
r∑
i=1

Y (T (W ∗1 , · · · ,∇XW ∗i , · · · ,W ∗r , X···))−
s∑

k=1

Y (T (W ∗···, X1, · · · ,∇XXk, · · · , Xs))

−
r∑
i=1

X(T (W ∗1 , · · · ,∇YW ∗i , · · · ,W ∗r , X···))−
s∑

k=1

X(T (W ∗···, X1, · · · ,∇YXk, · · · , Xs))

+
∑
i 6=j

T (W ∗1 , · · · ,∇XW ∗i , · · · ,∇YW ∗j , · · · ,W ∗k , X···)

+
∑
k 6=l

T (W ∗···, X1, · · · ,∇XXk, · · · ,∇YXl, · · · , Xs)

+

r∑
i=1

T (W ∗1 , · · · ,∇X∇YW ∗i , · · · ,W ∗r , X···) +

s∑
k=1

T (W ∗···, X1, · · · ,∇X∇YXk, · · · , Xs)

The claimed result follows by subtracting from the above the same equation with X,Y
swapped. �

Another proof can be done by assuming T = X1⊗ · · ·⊗Xr ⊗W ∗1 ⊗ · · ·⊗W ∗s and applying
∇Y∇X−∇X∇Y into via the Leibniz rule. Once M is endowed with a metric we define ∆T =
∇2
ei,eiT for an othonormal frame {ei}. Note that this lemma applies to the affine connections
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on any rank k vector bundle (E,Rk,M) over the manifold M . To make it sensible a torsion
free connection ∇ on TM and an affine connection D : TpM ×Γ(E)→ Ep are needed. The
second derivative D2

X,Y T + DXDY T −D∇XY T can be defined invariantly. The above result

holds for sections of the tensor bundle T rs (E). In this case Rx,y + D2
y,x −D2

x,y. The same
holds for the second Bianchi identity (namely true for general vector bundles).

For the Levi-Civita connection there is a Koszul formula, which can be checked directly.
It implies the uniqueness of the Levi-Civita connection:

(5) 2〈Z,∇YX〉 = X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈[X,Y ], Z〉 − 〈[Y,Z], X〉+ 〈[Z,X], Y 〉.

The curvature tensor now satisfies further identities:

〈Rx,yz, w〉 = −〈Rx,yw, z〉; 〈Rx,yz, w〉 = 〈Rz,wx, y〉.

The proof of these two identities can be found almost on every book on Riemannian geometry
(e.g. Do Carmo’s book, page 91-92). In fact the first equation holds for a metric connection
on general vector bundle. Namely 〈Rx,yZ,W 〉 = −〈Rx,yW,Z〉 for Z,W sections of the vector
bundle which is endowed with a metric and a metric compatible connection D. In this case
R can be viewed as a operator R : so(TpM)→ so(Ep).

For (Mn, g) a Riemannian manifold with p ∈M , let γ be a closed path at p. We also use
γ to denote the parallel transport along γ, which is an isometry of Mp, the tangent space
at p. The Riemannian curvature tensor has a geometric interpretation via the holonomy.
First for any x, y, z, w ∈Mp, define

〈γ(Rq)x,yz, w〉 + 〈Rγ−1(x),γ−1(y)γ
−1(z), γ−1(w)〉.

Here we also use γ to denote the parallel transport along γ from Mq to Mp.

Recall that Hp, the holonomy group at p ∈M , is defined as the group consisting of all such
γ ∈ O(Mp). A result of De Rham asserts that if the action of Hp on Mp is reducible then
the universal cover of M splits accordingly into ΠMi such that each factor Mi with Hp(Mi)
being one of the invariant subspaces. This suggests that we shall make the assumption that
Hp acts irreducibly on Mp for the discussion below.

The relative holonomy group H0
p is a path-connected subgroup of O(Mp), hence it is Lie

subgroup of SO(Mp). A basic result is that H0
p is a closed sub-group of SO(n) (a result of

Borel-Lichnerowicz). A theorem of Ambrose-Singer (see e.g. Sternberg’s Lecture for a short
presentation) relates the curvature and the holonomy group.

Theorem 0.1 (Ambrose-Singer). When γ varies among all (piece-wisely smooth) pathes
from q to p, and x, y vary among all vectors in Mp, γ(Rq)x,y generates the holonomy
algebra, namely the Lie algebra h, of H0

p .

In fact the result was formulated and proved for general principal bundles (which includes
the special case of Riemannian geometry where the associated principal bundle is the or-
thonormal frame bundle which is a principal O(n) bundle). For the Riemannian holonomy
group, the 1st Bianchi identity puts extra constrain on the holonomy algebra.

A fundamental result of Berger states:

Theorem 0.2 (Berger). Assume that H0
p acts irreducibly on Mp. Then either H0

p acts
transitively on Sn−1 or (M, g) is a locally symmetric space of rank ≥ 2.
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Recall that (M, g) is locally symmetric if ∇R = 0, namely the curvature tensor is parallel.
The condition ∇R = 0 is equivalent to that for any p and q 6= p, and any path γ from q to p,
γ(Rq) = Rp. A locally symmetric space has rank ≥ 2 if for any p, there exists W ⊂Mp with
dim(W ) ≥ 2 and Rx,y = 0 for any x, y ∈W . In fact by excluding subalgebras of so(n) using
the 1st Bianchi identity and Cartan’s classification of irreducible Lie algebra, Berger gave
a list of all possible holonomy groups for manifolds with are not locally symmetric: SO(n);
U(m) (n = 2m); SU(m) (n = 2m); Sp(k) (n = 4k); Sp(k) ·Sp(1); Spin(9), (n = 16); Spin(7),
(n = 8); G2 (n = 7). (The manifolds with Spin(9) holonomy were later proved to be locally
symmetric.) Theorem 0.2 can then be derived from this. On the other hand using the result
on the transitive actions on the sphere by Montgomery and Samuelson one can also derive
the list from Theorem 0.2. If the honolomy group H0 of (M, g) is not SO(n) (holonomy of
generic Riemmanian manifolds) nor U(m) (generic Kähler manifolds) we say that (M, g) has
a special honolomy. The above result of Berger implies that besides the locally symmetric
spaces, there are only five possibilities for the special holonomy groups. The study of
manifolds with special holonomy is an important subject in Riemannian geometry due to
models in physics involving the geometry of the special holonomy. In particular the ones with
SU(m) is called Calabi-Yau manifolds. For a Riemannian manifold with special holonomy
group H with Lie algebra h, and for any loop γ at p, the parallel transport γ ∈ H, via part
of the Ambrose-Singer Theorem (proved in the next lecture) implies that γ(R)x,y ∈ h for
any x, y (recalling R(x ∧ y) = −Rx,y), in particular we have that γ(R)(h) ⊂ h. Lemma 0.1
says that the D is the derivative of the holonomy and holonomy is the integration of the
affine connection. Hence R is the second derivative of the holonomy in some sense.

For the proof of Theorem 0.2 the following algebraic concept holds the key. We call
S = {V,R, G} a Riemannian holonomy system if V is a Euclidean space of dimension n
endowed with an inner product, G is a connected compact subgroup of O(n), and R is
an algebraic curvature operator on V . (Namely R is a (3, 1)-tensor which satisfies the 1st
Bianchi identity and other symmetries, abbreviated as R ∈ S2

B(∧2V ). Furthermore we
assume that for any x, y, Rx,y ∈ g, the Lie algebra of G.) The system S is called irreducible
if G acts irreducibly on V . This formulation reducing the problem to an algebraic one is the
first step in Simons’ proof (as well as in Berger’s original proof) of Theorem 0.2, which allows
one to focus on algebraic issues by applying algebraic tools. This can also be seen in several
works of Do Carmo-Wallach, Wallach, Wilking and the celebrated work of Böhm-Wilking
on Ricci flow of manifolds with positive curvature operator (Ann. Math. 2006).

Exercises: 1. Prove Lemma 0.1. 2. Prove formula (5). 3. Prove that H0 is normal in H.

From here the curvature R means the Riemannian curvature of the Levi-Civita connection.

4. Prove the symmetry R(x, y, z, w) = R(z, w, x, y) for the Riemannian curvature tensor.

5. The curvature operator is defined as Rm : ∧2TpM → ∧2TpM as linear extension of
Rm(x∧y), z∧w〉 = R(x, y, z, w). Clearly Rm is a symmetric transformation. Find a R such
that the sectional curvature K > 0 (namely R(x, y, x, y) > 0 for any x ∧ y 6= 0), but R is
not positive definite.

6. Prove that if the sectional curvatures of R1 and R2 are the same then R1 = R2.

7. Prove that 3Rx,yz = Rx+z,y(x+ z)− Ry+z,x(y + z) + Ry,xy + Rz,xz − Rx,yx− Rz,yz.

8. Prove that 6Rx,yz = Rz+x,y(z + x)− Rz−x,y(z − x)− Rz+y,x(z + y) + Rz−y,x(z − y).

9. For a Lie algebra g, the Killing form B(x, y) = tr(adx · ady) satisfies B(adz(x), y) +
B(x, adz(y)) = 0.
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