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0. Introduction. Suppose that xl,xz,...,xp
are smooth, real vector fields on a manifold M. Let

i be the differential operator

L = ) aa(x)xa,
la]<d
o _ =
where X~ = X“lxaz"'xap a = (al,az,...,ap),
|a] = p and the a (x) are smooth, complex-valued

functions. We seek the least restrictive conditions
that will guarantee that L is hypoelliptic, i.e.
that if Lf = g with g smooth in an open set U,

then f is also smooth in U.
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Our results will be restricted to the case
where xl,xz...xp satisfy the following two
conditions at each point.

(0.1) {Xk}, together with their commutators

X =[Xa

o '[Xa ""'Xa l1,...] up to some fixed

1 2 s
length r span the tangent space at each

point,

(0.2) For each j < r the dimension of the space
spanned by the commutators of length < j at
each point is constant in a neighborhood. (By

convention the X themselves will be

k
regarded as commutators of length one.)
Condition (0.1) was introduced by Hormander [8],
who showed that if it was satisfied the sum of
squares of the xk must be hypoelliptic. Metivier
[11] imposed the additional condition (0.2) in order
to study spectral properties of the sum of squares
operator.
By conditions (0.1) and (0.2) one can choose,
in a neighborhood of any point, real vector fields
{xjk}, where each xjk is a commutator of length
j, such that for any r' < r the subspace of the
tangent space spanned by xjk j < r' is the same
as that spanned by all commutators of length < r'.

If the xj are not already linearly independent,

we may by (0.2) replace them by a linearly indepen-
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dent subset which still satisfies (0.1) and (0.2).

Hence we may assume Xlk = xk. For fixed x € M
the choice of xjk defines a (canonical) coordinate
system around x by the mapping Ox given by

(0.3) Gx(y) =u= (u

jk) if y = exp (T u ) .x,

3x%3%
where exp denotes the exponential map defined in
some small neighborhood of x. Thus we identify a
neighborhood of x € M with a neighborhood of 0

in :Rn, where n = dim M. We define

*
where © denotes the differential; i.e. X. is
X jk,x

xjk written in local canonical coordinates around
X.
n

On IR°, with coordinates u =(ujk) we

introduce the family of dilations Gt(ujk) = (tjujk)
for t > 0. A function £(u) is homogeneous of degree
s if k(atu) = t%(u). A differential operator of the
form f(u)a/aujk is homogeneous of degree j-s if
f(u) is homogeneous of degree s. A homogeneous

differential operator of degree £ reduces homogeneity

by 2% degrees. A differential operator D on r"

is of local degree < j if its Taylor expansion at 0
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is a sum of differential operators homogeneous of
degrees < j. (See also Rothschild-Stein [13, Section

7).) Metivier has proved the following.

(0.4) Lemma. For any x, the local degree of

X. is < 1. Furthermore, if

Xk,x = xk,x + Rk,x !

where xk,x is homogeneous of degree 1 and Ry «

~

is of local degree < 0, then X, _ generate a
4

nilpotent Lie algebra U)x of dimension n and

. pping —> X, i .
rank r. The mapping x X. . A1is smooth

r

For x € M let G, be the simply connected
Lie group with Lie algebra U)x' The main result

of this paper is the following.

(0.5) Theorem. Let {Xk} satisfy (0.1) and (0.2),
and let L= )] a (x)x*. For x, fixed put
—_— == o — 0 —_—
|e|<d
L. = ¥ a (x,)X* be the corresponding left
Xg |a[=a a "0 Xq _—

invariant operator on G_ . If L is hypoellip-
— X == X —
tic, then L is hypoelliptic in some neighborhood

of Xg-
Combining Theorem 0.5 with the criterion of
Helffer-Nourrigat [6] for hypoellipticity of left

invariant operators on nilpotent groups we obtain
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(0.6) Theorem. With notation as above, L is

hypoelliptic in a neighborhood of x, € M if for

every nontrivial irreducible unitary representa-

tion ® of G , mw(L) is injective in S _,
- = X, = - T
-]
the space of C vectors of 7.
Following Helffer-Nourrigat [7] we call L

maximally hypoelliptic at X if there is an open

neighborhood U of X such that for every
sequence o, |a|] € d = deg L, there exists

Ca > 0 such that

2
2 + 1 £0

1x%£1 2 < c (1Ler? 2
L (V) L“(v)

L% (v) ¢

)

for all £ € C;(U). It can be shown [7] that if L
is maximally hypoelliptic at Xy v then it is
hypoelliptic in a neighborhood of Xq - Helffer and
Nourrigat [7] have shown that the criterion of
Theorem 0.5 is also necessary for maximal
hypoellipticity. Combining their result with
Theorems 0.5 and 0.6 we obtain

(0.7) Theorem. L is maximally hypoelliptic at

Xq if and only if for all non-trivial irreducible
unitary representations 7 of G ’ n(i ) is
— X Xg. —

injective in S_.

Theorem 0.7 was conjectured by Helffer and

Nourrigat (7], who proved it in the special case
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where the {Xk} are free up to step r, i.e. the
Lie algebras \gx are all isomorphic to the free
nilpotent Lie algebra of step r on p genera-
tors. In the general case the (QX need not even
be isomorphic. The relationship between the
injectivity of w(L) and the hypoellipticity of
L, when L is left invariant and homogeneous,
was first conjectured by Rockland [12], inspired

by earlier work of Gru$in [5].

(0.8) Remark. A sufficient condition for
hypoellipticity of an operator L = X aa(x)xa,
where {xk} satisfies just (0.1) may be given as
follows. By the methods in [13, Part II], one may
associate with X a vector field Y, ona

k

higher dimensional space, such that the Y,
generate a free nilpotent Lie algebra of step r.
L is maximally hypoelliptic at X0 if
L=c: aa(xo)Ya is hypoelliptic. However, if (0.2)
is satisfied, this criterion is far from necessary,
and in general is much more restrictive than that of
Theorem (0.5).

The author wishes to thank Bernard Helffer for

bringing this problem to her attention.

1. Smoothing operators and parametrices. We

shall prove Theorem 0.5 by modifying the methods of

Rothschild-Stein [13] in order to construct a left



CRITERION FOR HYPOELLIPTICITY 651

parametrix for L. We define the following function
spaces as in [15]. Lg will denote the classical
P based Sobolev spaces for 1 <p <o, s =20 for
p#2, s € R for p= 2. AS , 8 >0 will de-

note the classical Lipschitz spaces. The non-

isotropic Scobolev spaces are defined as in [13]:
sP = {£erP: x"ferP, |a] <k} with norm

a
1El = ] IXf1 _ + £l
sP |a[<k P P

An operator T, initially defined on C;(M) will

be said to be smoothing of order A if T is

bounded from

P __ P > ;
La > La+A/r 1 <p<w and a 0 if p # 2

a €ER if p = 2

SE _—> SE+A k=0 if X integral,

Aa —_ Aa+k/r if A >0

© .
L —> Al/r if X > 0.

In [13], there is no discussion of the space L2 ’

o
a < 0. However, one may easily reduce questions of

boundedness for Lg r S8 < 0, to that of L:. , some

s' > 0, for the class of operators considered.
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Theorem 0.3 may be obtained easily from the

following.
(1.1) Theorem. Let L = ) aa(x)xOL as in Theorem
|o]<a
- ca s
. = -
0.3 and suppose on la%zd a,(xg)X" 1is hypoelliptic

Then there exist ¢ € Cj(M) with ¢ =1 in a neighbor-

hood of x, and operators K and S smoothing of

orders 2 and = respectively such that

KL = ¢I + S.

To construct K we need more information on
homogeneous hypoelliptic operators on groups. Condi-

tion (0.2) and the results of [11] guarantee that each

qu is a vector space direct sum

. L "
2 g, =1y g ey

and &, defines an automorphism of U}x by

i o ipgi : i .
8, | lgx =t lgx , with dim ng =n; , independent
of x. An algebra e; satisfying (1.2) will be called

stratified. The homogeneous dimension of Gy is de-

fined as Q = ) ini. The homogeneous norm on G_ ,
i

identified with R" by canonical coordinates, is de-

r . 1/2r!}

fined as flub = { § |ujk|2r!/3} . The reader is
j=1

warned that the homogeneous norm was denoted by |u| in
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{93, (4], (3], and [13], while the above notation was
used for the usual Euclidean norm. In order to con-
struct a parametrix K we need the following abstract

existence theorem.

(1.3) Proposition. [3, Theorem 2.1]. Suppose that D

is a self-adjoint left invariant differential operator

homogeneous of degree d < Q, where Q is the

homogeneous dimension of G. If D is hypoelliptic

there exists a unique function k € c”(G-{0})

homogeneous of degree -Q + d such that Dk = §, the

delta function.

Following [7], we shall first consider the case
where Proposition 1.3 applies. The general case follows

easily (see section 8).

(1.4) Theorem. Suppose L and ix are as in Theorem

0.5. Assume also that £x is self-adjoint and

homogeneous of degree d < Q. Then if L is
0

hypoelliptic, there is a neighborhood U of x, such

that ix is hypoelliptic for all x € U. Let

kx € Cw(Gx-{O}) be the unigue homogeneous fundamental

solution for ﬁx , and define the operator K, by

(1.5) Klf(x) = [ ¢1(x)ky(@(y,x))¢2(y)f(y)dy

for any ¢l' ¢y € C; with by = 1 on supp ¢l'
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Then K, is smoothing of order 2 and there exists S

1
smoothing of order 1 such that

KL = ¢,I + S,.

2. Operators of type A. In order to prove that

the operators Kl and Sl defined in Theorem 1.3 have
the right smoothing properties we show, as in [13] that
they belong to families of integral operators enjoying

these properties. We first recall some definitions

from [4] and [13]. A function h € C (R"-0) is said
to be of type XA if h is homogeneous with respect
to the dilations of degree -Q + A, 0 < A < Q, with

the added condition for X = 0 that

I h(u)du =0 for any a, b with 0 < a <b < =,
a<lul<b

Integration against a kernel of type X is a distribu-
tion for A > 0. If A =0, a distribution may be
defined by taking the integral in the principal value

sense; i.e. f —> lim f(u)h(u)du is a

e+0 L<ll ull <o
distribution if h is a function of type 0. A

distribution of type A > 0 is one obtained from a

function of type \A. A distribution of type 0 is
one of the form ¢§ + v, where c¢ is a constant,
and T is a distribution obtained from a function of

type 0. If h is a distribution of type A 2 1,
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then Dh is a distribution of type A - 1 for any

D homogeneous of degree 1. (The reader is referred
to [3], [9] and [13] for proofs of these and other
relevant properties of distribution of type A.) 1If
h 1is a function of type X 2 0 we shall identify it
with the distribution it defines.

Now suppose the vector fields {X,} satisfy (0.1)

k
and (0.2). A function K(x,y) on M x M is a kernel

of type A if for all integral & > 0,

S N
(2.1) RK(xy) = ) a; 0k ey, xp (1 + £ (x,v)
i=1 '

where a b, € C.(M) k(i) is a kernel of type = A
i’ vi 0 ! x

with (x,u) — kil)(u) smooth away from u = 0, and
El € CQ(MXM), the space of functions with £ contin-

uous derivatives. An operator of type A is a mapping

T originally defined on C;(M) given by

Tf(x) = J K(x,y) f(y)dy.,

(2.2) Remark. The definition of operator of type A
given above is exactly the same as that given in {13],
for the special case where {xk} is assumed to be free
up to step r. The above definitions are given
independent of any group structure, and the main pro-
perties of the operators may be established without

reference to any groups. However, we shall have to use
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convolutions on the groups Gx for the proof of

Theorem 1.4.

The main properties of kernels of type X are

summarized in the following.

(2.3) Theorem. Let T be an operator of type A > 0.

(i) If X >1, the XjT and ij are operators
of type X - 1.

(ii) For any 3Jj, k there exist operators Tsl '

[}
Ty of

. _a
Tog of type X + (s-j) and Tg +

type A such that
kT = L ToeXgy + T
Ty = I OX_ 7' + T

(ii) T is smoothing of order A.

Proof. We shall be very brief, since most of Theorem
2.3 may be proved exactly as for the special case in
[13]. In particular, the proof of (i) is the same as
that of Theorem 8, Section 14 of {13]. For (ii) we
modify the proof of Theorem 9 of [13]. Recall that for

any Jj, k we may write

(2.4) X

ik,x = %5k, x
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where xjk,x is homogeneous of degree j and Rjk,x
is of local degree < j-1l. For any vector field X
homogeneous of degree j we define X', again

homogeneous of degree j, by

(2.5) Xx'f(-u)

[}

=X(£f(~-u)).

Now suppose {ij} {ij} are two bases of the

tangent space to R? with ij ' zjk homogeneous of

degree j, such that

3 jk 3

Y., = + ) g2 (u) , and

jk aujk s>3 s aus£

L
- 3 jk 3

Z., = - + J hZ*u)

jk aujk s> sg ausl

2

Then we claim that there exist functions asz(u)

aég(u) homogeneous of degree s - j such that

and

(2.6) Y

n

5k = 7 %yt ) a_,(Wz , , and

(2.7) 2

= - \j
jk Vg + 1 agy(wyg,.

Indeed, this amounts to inverting a triangular system;

see [13, Theorem 9] for details.

A

Now notice that we may take ij = Xjk,y and

- bl L} 3
ij = xjk'x for any x, y € M. By (2.6) we obtain
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(2.8) X. = -x!

jk,y B jk.,x * z a (X,Y,U)X

L,y
where the asg(x,y,u) are smooth and homogeneous in u.

. . .
(Similarly, we may express xjk,y in terms of st,x '

but we shall restrict ourselves to proving the first
equality of (ii).)

For x € M we write X* for when we want to
emphasize that x 1is the variable. Now xjkT is a
sum of operators with kernels

X
X k(a(x)ky(e(y.x))b(y)).

It will suffice to consider those for which ky is of

type A. Then we are reduced to considering

k = '
]k (e(YIX)) (xJk:ka) (u),

where u = O0(y,x). By (2.6)

(2.9) X:lk y y(u) = -XSR k (u) + z a (x,y,u)xsz xky(u)

Now since by (2.4)

2. X =
(2.10) st,y xsz,y + lower degree, and

-~

[ = ’
xsz,x xsl,x + lower degree
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we obtain from (2.6),

X
. ok (O(y, = =-X!
(2.11) Xk (@(y,x) = -x3 k (u)

jk
+ ) asl(x,y,u)xéllxky(u)

+ higher,

where the error is a sum of kernels of homogeneity
higher than A - j.

For the kernel of ijk , it suffices to consider,
using integration by parts,

- xY e .
x (alx)k (8 (y,x))b(y))
Since v = O(x,y) = -9(y,x) = -u,
- x¥ (k. _(®(y,x))) = k' (O(y,x)) - X%, _(k_(-v)),
ik Ty Y jk,x' "y

where k} is a kernel of type A obtained by
differentiating ky with respect to y. Also,

- = - ' - 3 .
stlx(ky( v)) (xjk,xky)( v) for any index s&
Hence

' - = %Y :
(2.12) st'xky( v) st(ky(e(y,x))) + higher terms

where the error is a kernel of type greater than X - j.
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Substitution of (2.11) into (2.12) then gives
XXk (0(y,x)) = -X¥_(k_(0(y,x))) +
iky ik vy !

jk y
] a SR'(x,y,u)xsg'(ky(@(y,x)))

+ higher terms.

Now by induction the higher terms can be dealt with

similarly, and we then obtain (ii). See [13], Theorem

9] for further details.

Part (iii) can be reduced, by (i) and (ii), to the

case where X = 0. For this case the same proof as in

[13, Theorem 6] will work once one has established the

estimates for ©(x,y) as in [13, Proposition 12.3].

The proof of Theorem 2.3 will be completed by the

following.

(2.13) Lemma. Let x, y, z € M. If Je(x,y})i and

i®e(z,y)li are both < 1, then there exists C > 0

such that
fe(x,y) - ©(z,y)l < c(le(x,z)l +

10 (x,2) 1/ %10 (x,y) 1 171/5y .

Proof. We essentially follow that of [13, Proposition

12.3], except that there are new error terms which must
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be estimated. Let v = O(x,y), w = ©0(x,z), and

u=0(z,y). Then
(2.14) (exp veX)(exp - w*X)z = vy,

. = . = Z . i
where v-X z vjkxjk and weX wjkxjk Now fix

z and regard ujk as a function of y be setting
ujk(y) = (0(z,y)) 5Kk

We must estimate lv-ul. To do this, observe that by

(2.14)

veX -we
e

ujk(y) = e xujk(z).

Now we claim that formally

(v-w) +X +Z Ca,k(y)qa,k(v’W)X[aI,k

e X —-ws k
vXewX= [« ¥

(2.15) e e

where Ca,k(y) is smooth,

£ la]-2
(v,w) = 0o( ) Ivi“iwl )
Ta, k™ 0<2<| o

Indeed, by the Baker-Campbell-Hausdorff formula the

left-hand side of (2.15) may be expanded so that

ev-xe-—w-x = e(v—w)'X + R,
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where each term of R is a commutator of length s

of veX and -w+X. Hence each term of R may be
written as

) q, l(v,w)xa .

2' * r
|o]<s

where Xa = [X k ,[XJ k ,...,Xj Xk J...]

272 tt
. . . t
with a = ((3,k), Gk (Gok)), ol = i£1 3 .
where
L Ja[-2
lg, ,(v,w)| =0 J Ivl 1wl )
ok 0<e<|a]

By (0.2) each xa may be written

X = . X.
E ca,j,k(y) 3k
i<lal
with <, 5 k(y) smooth. This proves (2.15). To com-
14 ’

plete the proof of the lemma, we shall show that

(2.16) X. R u., (z) =0
ik Jzk ke 3K
t
if ] j; < 3. 1Indeed, suppose (2.16) holds. Then
i=1

one may formally expand the right-hand side of (2.15)

to obtain

- u,k(e‘V'W)'x) +o( § avttiwiiTh
J 0<8<j
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(since the terms with coefficients which are

otvi*1wiS™*) with s <3j vanish by (2.16).) Aas in

{13, (12.9)] we use the inequality

al 1-a

A g 1 a.l-a

< C(a+A™B )

for positive real numbers A, B and 0 < a < a, <1,

1
to complete the proof.

Finally, we must prove (2.16). For this, assume by

induction that

(2.17) X, X. ...X. u., (z) =0
) 3173, igkg K

if Z ji <3j and s < t. (Note that Xj k ujk(z) =0
11

if ji < j.) By definition,

' X. ee o X, u., (z)
Jpky T Ik 3K

Now

s, X. k

teke

s X.
175,k
e ev.€ 1

T s X: o, + I CB(x)xB+O(|s|2)

935 .k
= e L7 |B]<t ,

where xBujk(z) =0 if |B| <t by (2.17) and
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273k

e ujk(z) = 0 since < j, all 2. This

jl
proves (2.16), and therefore completes the proof of

Theorem 2. 3.

3. Smoothly varying families of nilpotent groups. 1In

order to prove Theorem 1.4, we must show that there is

a neighborhood U of Xg such that the following

hold.

(3.1) If y € u, £y is hypoelliptic and hence has a
homogeneous fundamental solution ky.

(3.2) (y,u) —> ky(u) is smooth on U x (R"-{0}).

(3.1) will be proved by showing that iy has a

fundamental solution ky which is sufficiently smooth

away from 0. For this, we shall follow the outline of
the proof of Theorem 3 [13], in which it is shown that
a certain family of operators on a free nilpotent group
has a "smoothly varying" family of fundamental solu-
tions. Similar arguments will then prove 3.2.!

We shall now be precise. A smoothly varying

family of nilpotent groups is a collection {Gx},

X € M, such that each Gx topologically isomorphic to

R? and §atisfies the following.

SR

'In fact, the proof of Theorem 3 [13] is not quite correct,
since Lemma 6.7 there fails for the case Q = 4. The proof
of Theorem 3.6 below corrects this gap.
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(3.3) %{=eﬂ)gx' gx= gi+ Wi+ ”'*-gi‘

. i 3 i+j
linear sum, [lgx, ‘7x] C UJ . and
dim bg i = n, , independent of x,
(3.4) There is a smooth mapping

X = xjk,x

such that for each 3j, ({X. } is a basis of

jk.x
J.
9 x
Metivier [11] has proved the following.

(3.5) Lemma. If {Xj} satisfies (0.1) and (0.2) the

groups G, = exp U] ~ defined by Lemma 0.4 form a
smoothly varying family of groups with ij,x = Xjk,x'

In this context, (3.1) and (3.2) are contained in
the following key result, whose proof will occupy most

of the remainder of this paper.

(3.6) Theorem. Suppose {Gx} is a smoothly varying

family of nilpotent groups. Let L = z aa(x)xz ’

where a_ (x) is smooth, be a family of homogeneous left

invariant operators on G, such that each L is

self-adjoint and deg Lx < Q = the homogeneous degree

of G,. If Ly is hypoelliptic for some vy, there

is a neighborhood U of y such that L is
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hypoelliptic for all x € U. If kx is the unique

homogeneous fundamental solution for Ly v

(x,u) > kx(u)

is smooth for wu # 0.

Before proving Theorem 3.6 we state some conven-
tions and basic results for convolutions. We shall
denote by f * 9 the convolution of functions (or
distributions) on the group G, In most of what
follows, we shall omit the subscript when convenient,
and f*g will denote convolution on the varying
group Gx' If 1t is a distribution and f a func-

tion for which 1(f) is defined, we define the

convolution f*1 by

frr(u) = (£ 9
~ -1 Lu
where f(v) = f(v °) and g " (v) = g(uv). For
convenience we now state the fundamental results con-
cerning convolution by distributions of type A,

0<x<OQ.

Theorem A. ([Knapp-Stein [9], Coifman-Weiss [2],
Koranyi-Vagi [10] and Folland [3]). Let <t be a

homogeneous distribution of type A on G,
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0<xA<Q. If X =0, convolution by <t extends to

a bounded mapping on Lp(Gx), 1<p<w. If A>0,

convolution by 1 extends to a bounded mapping from

P to 19, where 1/q = 1/p - /Q, if 1 < p < Q/A.

Theorem B. (Folland [3, Proposition 1.13]). Let kl '

k, be homogeneous distributions of type R =20

on Gx with Q > 2

1 + Az > 0. Then kl*k2 exists and

is a homogeneous distribution of type \; + i, satis-

fying the associative law
(£xky) >y kp = £ x (kyx ko)

for all £ € IP, p<o/(A+),).

We shall also need the following easy results
involving manipulation of derivatives. If X is left
invariant on Gx , then
(3.7) x(f*xk) = f * Xk,

(3.8) X'(f*xk) = X'f *x_ k, and

(3.9) Xf*xk = f*xX'k,

if X£, X'fe P, 1<p<q/A, k of type A > 0.

Indeed, on the formal level (3.7) and (3.8) are simple
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calculations if £ € C: , and then one merely checks
that the appropriate integrals are absolutely conver-
gent. By Theorem A the result extends to £ € P pro-

videa x'')f e LP.

4. Existence of an inverse operator for Lx' We begin

the proof of Theorem 3.6 by formally constructing a

fundamental solution kx for Lx if x is close to

y. The existence of ky € c"(G-{0}) satisfying

4.1 L f* k =f* Lk =f£
( ) Yy Y Y Yy YVY

for f € C:(Gx) is guaranteed by Proposition 1.3. For

any x € M let Kx be the operator

n . .
(4.2) K. £=1lim £+ § (-1)3k!3,
X . X
nee j=0

(3)

x is the distribution of type 4

where k

(3)
k = -L )k -L )k _* ... * -L. ) k_*k
x (Lx LY) y*(Lx Ly) v (Lx Ly) vy

(4.3)
(0) _
kx = ky ¢
all convolutions being taken over the varying group
G, , Kxf will be defined whenever the sum on the

X
right-hand side of (4.2) converges in 1?9 norm for
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some g, l<g<e, i.e. if

e+ 7 03BN <c
j=0 x 4 °f
with Cf independent of n. Note that by the pro-
perties stated in Section 2, (Lx-Ly)ky is a
distribution of type 0. Since ky is a function of
type -Q + d, the convolution defining (4.3) is
associative by Theorem B and is a function of type 4.

(3)

X

Hence k is unambiguously defined. Furthermore,
since convolution by a function of type d is a

bounded operator from P to 19 if /g = 1/p - 4/Q,

by Theorem A, I £xk30 < CIft for p, q satisfying
X 14d P

above with 1 < p, q < ». However, in general the sum
will not converge, so that it will be necessary to put
extra conditions on x so that Kxf is defined for

f e Cz(Gx). For this we need some preliminary computa-

tions on the bounds of the operators £ —> f*(Lx—Ly)ky.

]

. L (x,y,u)
5.k, i jksi aujk

(4.4) Lemma. X - X = ] (x-y),q

where I5ksi is smooth and homogeneous of degree j-1

in wu.

9 .
Proof. By (3.4) X = ¥ a, (z,uz— with a,
_— sS,2 3k jk aujk ik
smooth and homogeneous of degree j-1 in u. Now apply
the mean value theorem.
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From Lemma 4.4 we easily obtain

o _ GO - 8,i
(4.5) Lemma. X, xy = ) (x y)iha,B,i(x'y'u)Du '
i,s,8
where gOl 8,i is smooth and homogeneous of degree
’ ’
fB] = |a|, and Dil is homogeneous of degree |[B8].

By Lemma 4.5 we may write

Bri

4. - = -y). .

(4.6) L L, B,g,l (x y)lhs'l(x,y,u)Du

with hg, homogeneous of degree [B| - d and Dﬁ'l
homogeneous of degree |B]. We need the following to

estimate fB£xk‘3)y |
X Lp

(4.7) Proposition. The operator
£f—>f * (Lx-Ly)ky
is bounded from LP to itself, 1 < p < » with bound

(4.8 If * (L _-L )k I < |x-y|[C B El

) X X y) Y Lp I y’ p'x L

with Cp % bounded when x varies in a bounded
’

neighborhood of vy.

Proof. By (4.6) it suffices to show that there exists

for each i, B, C > 0 such that

i'BuP,X
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B,1
4. ] . ' < C,
(4.9) f * (hB'l(x,y,u)Du ky)"Lp Cl,B,p,X“fan

.

with C, is bounded as x varies. First we

l.Brp,x .
claim that hB .(x,y,u)DB’lk =k 1is a distribution of
,1 u 'y
type 0. Clearly it is a distribution, since ky is a
distribution. Also by the homogeneity of h and
Di’l, k 1is homogeneous of degree A = - in the

sense that k(£°8,) = £ M (£) = k(f). Hence by

Knapp-Stein [9, Theorem 2], k is a distribution of

type 0. Hence f —> frk extends to a bounded
operator on L, 1 < p < » and it suffices to show
that the constant Cp,x is bounded as x varies
over a compact set. For this, we must check the
constants which enter into the proof of L2 bounded-
ness, and then those of the P boundedness (which
depend on the L2 case). By checking the proof in
Knapp-Stein [9, Theorem 1], we find that

I £xki < Cifl , where C depends on C, ,
L2 L2 i

i=1,2,...,6 as follows.

log(b/a)

(4.10) J |k (u) |du < ¢,

as<fiul<b
If k = k(x,y,u) is as above, with y fixed, then k
varies smoothly with x, u # 0 so that C, can be

chosen independent of x as x varies in a bounded
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n
neighborhood of y. (Note that each G, ¥ R,

topologically, and that the definition of the norm
is independent of x. Hence the group multiplication

on Gx is not involved in (4.10).)

k()| < cpu~??

(4.11) | 2

a__
aujk

C2 is clearly bounded if x is bounded.

1/r
(4.12) 1fu V- oul < C3|v| /

if lwl <€ 1, where °% denotes multiplication on Gx‘
C3 is bounded since multiplication on Gx is smooth

as x varies by (3.4).
(4.13) |u| < Cyltul, lul < 1.

Here C4 is actually independent of x.
(4.14) Iu ° VI < Cg(lul+livl).

C5 is bounded by the smoothness of the group
multiplication on G-

By the remarks in section 2

(4.15) f£xk = cf + PV(fxk),
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a constant, where PV denotes principal value, taken
in the homogeneous sense. The above examination of the

proof of [9, Theorem 1], shows that

B,i
(4.16) PV(fx(hg ,(x,y,u)Dy kyuL2 < Ci,B,z,x"f"Lz '

with C;

bounded if x varies in a bounded
i,8,2,x

subset of y. We must show that the constant ¢
in (4.15) is also bounded as x varies. 1In fact c

is determined by C. . where
(4.17) k(| < c w2,

For, by definition of the principal value operator and

integration by part 5,

cf(0) = lim f k(u)f(u)du < |£(0) |[1lim J X (u) du.
€0 ‘lul=¢ e>0 /lul=¢g

Since Kk (u)du < c let ™9 jut " %au = cG, .
_ 6 6
ful=¢

lul=¢
the proof of (4.9) for p = 2 is complete.

For arbitrary p, 1 <p <%, C depends on

i,B,p,x
the constants C7 ' C8 ' C9 defined in the following

inequalities.
-1

(4.18) fu eV < C7(Duﬂ+ﬂvﬂ)
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C7 can be chosen independent of x, for x in a

bounded set by the continuity of the group multipli-

cation.

(4.19) lk(w’l e W - k()| < Cglwi jug 971

if gwl < 1/2 C7ﬂuﬂ

Note that C7(Ilw-l °p Ul + iwl) > gug by (4.17) and so

-1 1 -1 .
lw °x ull > ful C7nwﬂ > 2llull. Hence w °x u is

bounded away from 0 if ul = 1, and one may pro-
ceed as in [4, Lemma 8.10], checking that the constant

C8 may be chosen when x varies in a bounded set.

From (4.19) one obtains

|k(w-loxu) - k(u)|du < C

(4.20) J 9 !

ﬂuﬂ>2C7ﬂwﬂ

with Cq depending only on C7 and Ca. Then

(4.21) ) £xki < CIfi l1<p<w
P P

follows as in [2, Theoréme 2.4], with C depending
only on C, » Cg and the constant in (4.15). This

completes the proof of (4.9) and hence of Proposition

4.7.

(4.22) Corollary. Suppose = - d4/Q , with

Q=
el ] ]

1<g<e® 1<p<Q/d. Let Cp = 1 be chosen so
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that Co,x < Cy for all x, |x-y|<1l. Then if

4.23) §£+k3
( ) B xﬂLq

= f£+(L_-L )k _*(L_-L )k *...(L - k_xk_1
BEx (L y) v ( < y) v (L, Ly) v*%y La
3
< C fa(L -L Yk *{(L_-L )k_*...%*(L _-L )k !
pq! £* (I by ky* (Ly "Ly Moy x Ty kgl p
by Theorem A, since ky is of type d. By Proposition
4.7 applied j times, the right-hand side of (4.23) is
bounded by C__|x-y|Jclifi _. Hence the sum converges.
Pq P 4P

-

Finally, we claim that the operator Kx : 1P — 19
is formally a left and right inverse for Lx' Indeed,
by (3.7)

(3), _ - - _
Lx(f*kx )= f*(Lx Ly)ky*(Lx Ly)ky,*... * (Lx Ly)ky*kay
= £x(L_-L_)k L_- k .o -

(L, y) y*(, % Ly) v * * (L 1.3()1:y

j+1

+ f*(Lx-Ly)ky*(Lx-Ly)ky*...*Lyky
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= - - -L )k
f*(Lx Ly)ky * * (Lx Y) v

j+1

+ fx(L_-L )k _* ... * (L_-L )k
( X Y) Yy ( S Y) Y
]
Hence 2 Lx(f*kéj)) is a collapsing sum, and we need

only check that it is absolutely convergent. However,

If%(L -L )k * ... * (L-L )k I < |x-v[JcI
x Lyl kg (L, y) v p | %~y | CpﬂfHL

@« 3
which implies | L (£xx(3)y = ¢ provided |x-y| < c_.
520 X X P

Since Lx is self-adjoint, K, is a left and right

inverse for Lx‘ We summarize these results.

(4.24) Theorem. Let Kx be defined by (4.2). Then

for any p, q, 1<p, g<« 1/q=1/p - d/Q, there
exists 6§ = 6p q > 0 such that if |[x-y| < 6§ and
exists , Such that if and

§ € LP,

IK_f£l < Ccifi '
x ;4 P

LK f=f, and

=
3
+h
]
H

5. Smoothness of the kernel of Kx' We have now con-
structed a left and right parametrix K. for L, .

but we know only that Kx is bounded from 1P to LY.



CRITERION FOR HYPOELLIPTICITY 677

We shall show that by taking some &' < §, we have

ke = ) (-1)Jk;3) € ¢c”(R"-{0}) , provided |x-y|<s&".
j=0

Here we shall follow part of the proof of [13, Theorem

3]. However, in this case we do not have uniform

estimates for Lx as in [13, Lemma 6.9], since we do

not even know that L. is hypoelliptic in a neighbor-

hood of vy.

As in [13), Theorem 3.6 will be proved by the

following. Let kx be defined by f*kx = kxf.

(5.1) Main Lemma. There exists 6' > 0 such that for

all x, |x-y| <¢§' Dﬁkx(u) exists for all B, all
u, % < lut < % » and satisfies
sup |DBk (w| <c
1 u x B
ALY

independent of x. In particular, k € Cm(Gx-{O})
and hence L, is hypoelliptic.

Assuming the Main Lemma, let us prove Theorem 3.6
now, essentially as in [13, Theorem 3]. First note
that since L, is hypoelliptic for all
ze€ U= {x: |[x-y| < 6'}, we may replace y by any

2 € U in the Main Lemma. Thus for any z, there

exists &, such that if [x-z| < 8,

o v ()
(5‘2) kx(u) J£0 kX,Z'
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where
(3) _ _ - -
(5.3) kx,z = (Lx Lz)kz*(Lx Lz)kz * ... *(LX Lz)kz*kz B
j =1
(0) _
kx,z = kz.

(Since both sides of (5.2) are homogeneous fundamental
solutions smooth away from 0, they must be equal.)

Next, we define a countable collection of semi

norms {I “a} a = (al,...,un)
5 O
kg = s [ k(w |
§<[luil<§
for ¢° = {k : k is smooth on {% < Jul < %}. A map-

ping f from U to C  will be said to be bounded

if the positive functions
X ——> [ £(x)1
a

are bounded for each seminorm «. The Main Lemma im-
plies
(5.4) Lemma. x —> k,  of U to c® is bounded.

Next, we show that for fixed u, x —> kx(u) is

c®, xe U. By (5.2), for any z € U and any positive
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integer &, if |x-z| < 8,

(5.5) ku = )) (x-ﬁ) k;(x,u) + Rﬂl(x,z,u)[z-xvz'+l
|o|<e al:
where kéa) is a sum of convolutions with kz over

G, » of |a| terms of the form hs(x’z’U)Dﬁkz , where
hB is smooth and homogeneous of degree |B8| - d in u.
Hence by Lemma 5.4 the kernels (x,z) —> kéa)(x,u) and
the remainder Rz(x,z,u) vary over a bounded subset of

c” for x, z € U, |x-z| < 62. By the converse of

Taylor's theorem with remainder, applicable since
kx(u) provides a Taylor expansion with bounded
coefficients, x —> kx(u) is ¢ on U and for
each a, we may calculate (%;)akx(u) as follows.

Expand hB(x,z,u) in a Taylor series around z:

(x-2)% ()
h, (x,z,u) = ) h (z,z,u)
8 |a[<t TaTt" "8 '
+ rB(z,u)lx-z|£+1,
where héa)(z,z,u) is the a derivative of h(x,z,u)

at x = 2z, and rB(z,u) is the remainder. Then

o

(a-B8) B
(==) k_(u) = ) h (x,xu)D’k_ ,
X X |B|<|a| 8 u X

which is bounded in absolute value on any compact sub-
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set of U by the Main Lemma. Now since

(x,u) —> kx(u) is separately smooth in x, u, u # 0,
with derivatives bounded on compact subsets, we may
conclude as in [13, Theorem 3] that the mapping is
jointly smooth. This proves Theorem 3.6, modulo the

Main Lemma.

6. The main estimate. We shall now state an estimate

and show that it implies the Main Lemma. We write
Si % for the spaces Si(Gx) defined with respect to
r

the left invariant vector fields Xj x on Gx' When
14

there is no ambiguity, we may omit the subscript x

and write SE. Theorem 3.6 will be proved by the

following.

(6.1) Lemma. Let K = {u: 0 < lul < %}. There

exists 6' > 0 satisfying the following. For every

integer m = 0, there is a constant Ch and

a bm € C;(K) such that am(u) =1 for [Qul <

8 |

and b =1 on supp ag such that for any g € Co(Gx)

with supp g € {u : % < flull < %} and £ = gk, ,

[x-y| <8§' the estimate

(6.2) Hamfﬂ q < Cmﬂbmfﬂ

m,x

Lp

holds for some p, q, 1<p, q<w=, p>0/4.

We shall refer to (6.2) as the main estimate. To

prove it we shall start with an easy observation. If
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¢ > rm, m integral, then

(6.3) dadl p < Cxﬂa¢ﬂ

L m sP

L,%

for all ¢ € C; and all a € C:(K), such that Cx is
bounded as x varies in a bounded neighborhood of vy.
Indeed for fixed x the inclusion is clear by the
characterization of Lﬁ as the space of LP functions
with up to m derivatives in Lp, given that a has
fixed support. The boundedness of Cx follows from

(3.4) and the fact that supp a € K is fixed.

Next, i b € C;(K) with b 1l on supp a and

1/p = 1/t - d4/Q, then by Theorem 4.24,

6.4 Ibfl = Ib(K 1 < Clgl
( ) bf p ( Xg) p Clg

L L Lt
for some constant C, if |[x-y| < §'. By the main
estimate and (6.3),
L] "
(6.5) layfl o < cpib €1 < chigh .
Lm L L

By Sobolev's Lemma e.g. [15], for any o, there exists

m > 0 such that

a ]
(6.6) [|D £(0)] < Ca'qﬂamfﬂ g < Ca'pﬂgﬂ

L t
m

L
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by (6.4). Now if Dﬁ is left invariant on G, by

(3.7),
(6.7) sz(o) = (g*Dﬁkx)(O) = J g(u)(oﬁkx)(u‘l)du.
Hence from (6.6),

I[ g(u)ozkx(u“l)du

< ¢ gl
o,p 9 LS

By the converse of Holder's inequality,

t! 1/t
. -1 "
{Jl lDakx(u ) | dul < Ca,p '
PR

Nf\w

where t' satisfies 1/t' + 1/t =1 since g is
arbitrary among smooth functions with support in
{% < ful < %}. By another application of Sobolev's

inequality Dﬁkx(u) exists for all B and satisfies

B <
sup |Dukx(u)| C

1. 3
E\luﬂ<5

B*

Hence by homogeneity, for |[x-y| < &', k, € c®(e-{0}),
which, as is well known, implies that Lx is hypoel-

liptic.

7. Estimates for IDYfl_, f = gxk_. We begin the
uq X
proof of the main estimate (6.2). By induction it suf-
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fices to prove that for ay € C;(K) there exists

00
a_1 € Cy(K) such that an-1 =1 on supp a ~and
(7.1) ﬂamfﬂ q < Cm(ﬂa £l + la £ ).

m-1 q m-1
Sm sm—l

Since K is a left inverse for L, . if |x-y} < &
(7.2) amf = (anmf)*kx = [Lx,am]f*kx + amfo*kx ’

where all convolutions are taken over Gx‘ The last

term in (7.2) vanishes since amfo =ag-= 0. Hence
(3)

[Lx,am]f*kx .

Thus we must estimate

(7.3) tlna jeski1 = 7 IX3 (L, a 1Exkll

q q
s3I Jaf<m L

This will involve mainly manipulation of derivatives as
in [13, Section 14]. The main results needed, besides
Theorems A and B, are formulas for moving derivatives

across convolutions. We write xjk for in the

xjk,x
following.

(7.4) Lemma. For a vector field X let X' be de-

fined by X'(f(-u)) = -(Xf)(-u). Then
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I

(7.5) X -X! + ) b, _,(x,u)X!
k k sS1 kst s?

(7.6) Xy =-X + ] b

! (x,u)X [
k 31 ks2 si

1
where bksl and bksz are smooth and homogeneous of

degree 3j-1 in u.

Proof. These are both special cases of (2.8) with

X =Y.

Now we estimate (7.3). First,

a finite sum, with each am'i(u) satisfying an,i9 = 0

since supp an i C K. First, we shall show the follow-
14

ing.

%1 (3
(7.7) Lemma. Each X "a . f*k is a sum of
4
j)d-l

(c terms of the form

a . fxk_ %k,
m, i j TI-

!

1%-- ¥k vk o

where c¢ is a constant, independent of j and x, each

ks is a kernel of type 0 of the form

By 82
kS bsl(x,u)x bsz(x,u)x e

B
d-1
(x,u)X (LX-Ly)k ’

b
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s > 1, where IBil < r-1 for each i and by (x,u)
— ~ i

is smooth, and homogeneous of degree Bi in u, and

kg = Xaky ool = Jay

o0

Proof. Suppose ¢ € C0 ’ hl""hj kernels of

type 0 and k, a kernel of type > 1. Then by (3.9),

(7.8)  Xpowksxky ) % ... * Ky*k

= ox(Xpko)wky ) * ... * k, %k,

By (7.6)

[ = - '
Xpk. xkkj + SZZ bslk(x'u)xslkj
14

.
k. + J X_(b (x,u)X Yk,
K3 iTe o ]

- X

with lai] <r-1 and b, {x,u) homogeneous of degree
i,t

]ai|. (The last equality is obtained by expanding Xg

as a sum of products of the xk' Hence applying (3.9)

we obtain ¢ terms of the form

o
1 '
¢*baix kj*xi(kj_l*kj_2 * ... % ki*kg).

Continuing, we express the left-hand side of (7.8) as

c?  terms of the form
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a as_g ay
o*b_ X Ix . +b X3, % ... *b x lk.sx.k
3 j @y 1 j-1 a i

. o _ _ .
Now since X~ = xklxkz...xk + S < d-1, and ky is of
s
type d, the lemma follows by induction.

Next, we must estimate

1X, X, ...X, (a_ .fxk_.*k. ....xk_xk )i .
i,"i, 15( m,1i j -1 1 0) 1.9

First, since ko is of type t, 1< t<d with t < s,

then
(7.9) Xy Xy o Xy (am,if*kj*kj—l * ee. * kyk,)
1 -2 s
X. X, ...X, (a_ .fxk.xk. . * ... * k.*k'),
i, "1, gy mi J T i-1 170
. - .
where k0 = X ...xi X, k0 is of type 0.

lo-t+l s-1 “s

(7.10) Lemma. If k; is of type 0, i =1,...,3,
and k, also of type 0, then

X, «..X.
1 1y

terms of the form

Ny
«af)*kj*kj_l...kl*ko) is a s

1 1 o
(le...leaf)*kj*kﬁ_l * oooox kiskp
where
. al (12 azk
(7.11) kt = Cu (x,u)X Ca (x,u)X "'Ca (x,u)X €’

2 L
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with Ca homogeneous in u of degree [ai], and
i

kg of the same form as ké with kt replaced by kb.

Proof. This is essentially the same method as for

Lemma 7.7. First,

xk(¢*kj*kj_l * ... % kl*ké)

= (¢*kj*kj_l...*k1)*xkk6

by (3.8). Now express Xy in terms of Xé using
(7.5), and move the derivatives left by (3.9) and re-
peated use of Lemma 7.4. We omit the details.

Now we are ready to estimate

1X, X, ...X, (a_ .fxk.*k., . * ... * k.*xk )l for
i, i, i, m1 j Tj-1 170 19

s € m. First, if s =2 t = type of ko , then by Lemma

7.10,

(7.12) 01Xy X, «..Xy (am,if*kj*kj—

* ... % k. *k )1 <
0
1 72 s 1

1 g

4

Igup ...X a_ . f)xk'*k!
C- "sup (Xj . ( ) 5*k5-1

Ty
1 dgegmy ™3 10

1.9
where the supremum is taken over the finitely many terms
of each type. By Theorem A, the mappings ¢ —> ¢*ki
and ¢ —> ¢*k8 are bounded on L%. It is important

to know the norms of these operators. We have shown
that the norms depend on the constants Cl'CZ""'CQ
defined by (4.11) to (4.19). By (7.11), it suffices

to assume ki is of the form
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C(l az
(7.13) e (x,u)X e (x,u)x “..
oy o

% B
5 .ea (X'u)x hB(x’y’u)Duky'

where ¢ < (s-t-1) + (g-1) < m+d, e

is homogeneous
i

of degree 'ail’ and hB is homogeneous of degree
[B]. Now as x varies in a bounded neighborhood of v,

(7.13) varies in a bounded subset of C”. Hence

I o*k il < Ix-y|c_ el

with Crn a independent of x. Similarly,
r
q°

*k o s c' o lgl
¢ Oqu m,q ¢IL

Hence

(7.14 Xy o-oXo af)*k!*k! - % ... *kIxk"y <
( )n(Jl 5 af)*kixk! ) ki *kgi

L 0" pa
¢! Ix=y|3cd ux. ...x. am <
m'qlx y] cm,qu 3 ija nLq

) - b
cm’q([x Y,Cm,q) uafnSq
m-1

if jz < m-1. Thus, combining Lemmas 7.7 and 7.10 with

(7.12) and (7.14) we obtain

(7.15) ﬂXi X, ...X,

i, 1S(am,if*kj*kj-1*'"*ks*ko)"

L
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c cd |x-y]J(Cm'q)3ﬂafH q
m-1

if s> t. Now if s < t, then

. k. .. ¥k *k )
Xilxiz"'xis(am,lf*kj 3-1 1*ko

-

)
I O i

where kg = X; X; ...X; k. is of type t = 0. Hence

if t =0,

. CExk %k,  *... %k %k ) <
l’Xilxiz xls(am,l j i-1 170" .49

3
c |x-y] ﬂam'ifﬂ q
by the same argument as for (7.14).

Finally, if
0<t<d<g

(7.16) 01X, X, ...X. (a_ .fxk_.*k. _*..,*xk_*k
i1, ls( m,i j T3-1 kl O)HLq

\
ﬂ(am’if*kj*kj_l*...*kl)*koﬂLq <

Celag, s Exks*ky %o k)l

P
L t

where 1l/q = l/pt - t/Q. Note that C,

of x, for x

is independent

in a bounded neighborhood of vy.
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P
Finally, since convolution by kz is bounded on L t

with bound given as above for ki + we obtain from

(7.16)

(7.17) 1%, ...X; (am,if*kj*kj-l*'"*kl*ko)“

s s A

S P
Celx-y|-c Ham,if"Lq <

r

S P
Clx-y[-Cllayfl B,
L

where a, € Cg(K) a, = 1 on supp a , all m, i,

m,i
and C, C. are independent of x, provided x is in
a bounded neighborhood of y. Now t may take only

the values t =1,2,...,d, so that there are at most

d values Py- Now choose p > Py v t=1,2...4.

By HOlder's inequality since a € C:(K),

faht < C_lahl
Lt P L

all h € ngc ¢+ Pprovided p 2 sup Py- Thus, combin-

ing (7.15) and (7.17) with Lemma 7.7 and (7.10) we have

(3)
1 [Lx’am] f*kx l q
Sm

< cad [gev]ied
cd? | x-y| Cm,q,p”am-lf“sq + lagfl )

m-1
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Now choose 6' < 1/4 C . Then
m m,q,p

1(L_,a JE*k ! _< § 0[L_,a 1exk!30 <
x'“m Xgd 45 x’%m X Sz

Cm(ﬂam_lfﬂsq + ﬂaofHLp)
m-1

provided |x~-y| < §p- Now if &' is chosen so small

that 65 < 63 for all j € m, we have the following.

(7.18) Lemma. Put q =0/(Q - d - 3). Then
1 <g< = For every m > 0, there exists 6% such

that if [x-y| <&} .

fa_l < C ib £l
an Sﬁ m o m P

i
[

o0
. = €
with bm 1l on supp a roap s bm CO(K), a,

on {lul < 1/4}, all p > q.

Proof. We have shown

’

ﬂamfﬂ < sup Cmﬂbmfﬂ

sl i=0,1,...,d P

L i

where 1/q = l/pi - i/Q. The choice of g above
guarantees that one can solve for p; with Py > 1.
Now since 1/p; = l/qi + i/Q = (0-d-1/2)/0 + i/Q

p; = Q/0-(d-i)-1/2 < Q/Q-d-1/2. Now take

p > Q/0-d-1/2. By Holder's inequality
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Ib_f£l < ib_fl .
m p. m _p
L * L
Unfortunately, Lemma 7.18 is not quite the same as
the main estimate (6.2) because of the dependence of
6% on m. We shall show that if m >> 0 we may take
§' = 6& constant. The following is proved as in Sec-

tion 5.

(7.19) Lemma. For every s > 0 there exists J = J(s)

such that if [x-y|<8' , then u —> k, (u)

S
€C (Gx-{O}).

8. A criterion for hypoellipticity on groups. We want

to show that if k. € CS(GX-{O}) for s sufficiently
large, independent of x, then k € Cw(Gx-{O}) and
hence Lx is hypoelliptic. For suppose this is true.
Then if 6&(5) is chosen as in Lemma 7.19, L, is
hypoelliptic for z € U= {z : |z-y| < 5&}. Now one may
prove the Lemma 6.1 for any compact subset K' of U
using Lemma 7.18 with y replaced by any z € K'.

The proof of Theorem 3.6 will depend on the

following, which is of independent interest. (See [13,

Theorem 2] and [1] for related results.)

8.1 Theorem. Let G be any nilpotent group with

dilations and L a left invariant differential operator

on G homogeneous of degree d. Then either
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(i) L is hypoelliptic, or

(ii) there exists ¢ continuous on G with

Lo = 0, but ¢ ¢ c¥*l(g).

Proof. Suppose L 1is not hypoelliptic. By the theorem
of Helffer and Nourrigat [6], there exists an irreduc-
ible representation ©® of G on Lz(nf% , some N,
and a non-zero C_ vector H € Lz(]RN) such that

7(L)H = 0. From 7 one constructs a family of
irreducible representations LI A >0 with

nA(L)H = 0 by setting

"A(X) = n(GAX).
Now we proceed as in [13, Theorem 2]. Let
b -k
¢ (u) = <nA(u)H,H>A dx,
1

where k = d+2 will be chosen later, and < , > de-
notes the inner product in LZ(IJ%. Since T, is
unitary, the integral is absolutely convergent for any
u € G. Hence ¢ is continuous. Furthermore, by

i =4 h
homogeneity 7, (L) = (L), so that

Loé(u) = J L<ﬂA(u)H,H>A'de

® -k
= Il <m, (u) T, (L) H,H>A"FaA.
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(Since k # d+2 the integrals are absolutely conver-
gent, which justifies differentiation under the

integral.)

We shall now choose k so that ¢ & Cd+1(G).
First choose X € U] so that n(X) = iI, I = iden-
tity. (This is always possible by defining the
quotient (g' = uJ/ker m. The center /5' of lg' is

one dimensional, and #(z') = iIRR-I.) Then

HA(X) = "(GA'X) = i

for some s, 1< s <r. Let g <d be chosen so that

q = d/s, and put

k=1+g4gs + s

Now let y(t) = ¢(exp tX), t € R. We claim
v ¢ c31(R), which will prove ¢ & c9*1(G). Indeed,
® .8 - 1S, _
Yit) = I ity psakay = ¢ I et Ky,
1 1

Now

q (-] - . s o _ N S
) . viE) = I A@s—k ity J A (sH1) JiXTE g,
ot 1 1

since the integral is absolutely convergent. However,
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g+l ®© .1 S
2= 4(0) = lim f AT (AT 4y s an,
atd t+0 /1

which blows up as t —> 0, as is easily seen by mak-

ing the substitution u = Atl/s.

(8.2) Corollary. Suppose d, Q are fixed integers

with 0 < d < Q. Then there is an integer s,

depending only on d, QO such that the following holds.

For any stratified nilpotent group G, of total

homogeneity Q', d < Q' <Q, and any homogeneous,

self-adjoint left invariant differential operator L

homogeneous of degree d on G, if L has a funda-

mental solution k € c®(G-{0}), homogeneous of degree

-Q' +d, then k € c”(G-{0}) and L is hypoelliptic.

Corollary 8.2, together with the remarks preced-

ing Theorem 7.1, will complete the proof of Theorem 3.6.

Proof of Corollary 8.2. If L is not hypoelliptic, by

Theorem 8.1 there exists ¢ € L2 such that L¢ = 0,

loc
but ¢ & Cd+1. By Sobolev's Lemma there is an integer
. 2 2
j > 0 such that ¢ € Sj,loc but ¢ & Sj+l,loc‘
Choose a € Cg with a¢ & S§+1‘ If Xi is homogeneous

of degree 1, then'

(8.3) BX; ...X, agl , = 1X; cee Xy (Lag*k) I 2

1 j+1 L 1 j+1 L
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= nxil...xij+l([L,a]¢*k)uL2
since L¢ = 0. Now if k € c°(G-{0}) for s
sufficiently large, depending on 3j, then one may show,
by using Lemmas 7.7 and 7.10, that the right-hand side
of (8.3) is bounded by Ilb¢lls2 , wWhere b = 1 on
J
2

supp a, which is finite by the assumption ¢ € Sj loc*
’

This contradicts the assumption that a¢ & S§+l.

9. Completion of the proof of Theorem 1.1. We may now

complete the proof of Theorem 1.1. By Theorem 1.4, the
operator K1 defined by (1.5) is of type 2 and hence
is smoothing of order 2 by Theorem 2.1 (iii). The proof
that § 1is smoothing of order 1 follows exactly as in
[4, Proposition 16.2] and [13, Theorem 10].

For the proof of Theorem 1.1, we reduce to the
special case L = L*, deg ﬁx < Q, following the argu-

ments in [7]. We replace L by

where s 1is chosen so that s + Q > 2d. L' acts on

M x RS » and the set of vector fields Xk '

k=1,2,...,p and i=1,2,...,8, again

B_ ’
ati

satisfy (0.1) and (0.2). Furthermore, for any
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(x,t) €M x R° the operator £2x ) is self-adjoint
’
and homogeneous of degree 2d. By the theorem of

Helffer-Nourrigat [6], is hypoelliptic for

T
L(YIt)
all t € R°. Now by Theorem 1.3 there exists K1 ’ S1
smoothing of orders 2 and 1, respectively, satisfying

KlL' = ¢I + S

l ’

where ¢ = 1 in a neighborhood of (y,0). By the
construction of Rothschild-Tartakoff [14] we may im-
prove Kl so that Sl becomes infinitely smoothing.
By integrating over the extra variables in [13,

Theorem 15] we obtain K', S on M smoothing of 2

and <« respectively such that
*
K'LL = ¢'T + 8.
Now we may take K = K'L .

Remark. The technique of Helffer~Nourrigat (7] des-
cribed above gives new results on estimates for solu-
tions of Lf = g even in the case where L is

already a left invariant operator on a stratified group
G. 1In particular, the estimates given in (3, Theorem
6.1] are valid whenever L is hypoelliptic without the
added assumptions that deg L is less than Q, the

%*
homogeneous degree of G, and L is also hypoelliptic.
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