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0 Introduction

In this paper we study local geometric properties of smooth CR mappings between
hypersurfaces in C"*!, In particular, one of our main results (Theorem 4 below) is
that any smooth CR self-map of a hypersurface of D-finite type fixing a point is
either constant or a local diffeomorphism. The novel approach here is the use of
techniques of analytic discs as in Tumanov [22] for the extension of CR functions
as well as the use of a new notion, that of minimal convexity (see below), which is
crucial for the proofs. We also apply other results of the authors given in [7] and
[11].

Let M be a smooth real hypersurface in C"* 1. For pe M, we denote by T,M the
real tangent space of M at p and by CT, M its complexification. We denote by ¥,M
the complex subspace of CT,M consisting of all antiholomorphic vectors tangent
to M at p,and by T, M = Re ¥, M the complex tangent space of M at p considered
as a real subspace of T,M. Recall that a smooth (germ of a) map H (at po) from
M to another smooth real hypersurface M’ is called CR if for every peM,
H'(V,M) c ¥y, M’, where H' denotes the differential of H. Note that if
H=(H,,...,H,+), where H;: M — C, then the H; are smooth CR functions
defined on M.

Recall also that an analytic disc in CY is a continuous mapping 4: 4 - C¥
which is holomorphic in 4, where 4 is the open unit disc in the plane and
4=4uUS', where S' is the unit circle. We say that A is attached to M if
A(S') = M. We shall always assume all analytic discs to be of Holder class at least
C'%(4) for some fixed a&(0, 1), passing through a point poe M, which we fix
throughout, i.e. A(1) = po. The norm of 4 is always taken to be in this Hélder class.

Following Tumanov [22] (see also Trépreau [21]), we say that M is minimal at
Ppo if there is no germ of a complex holomorphic hypersurface contained in M and
passing through p,. Note that if M is of finite type (in the sense of Bloom and
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Graham [16]) at po then M is minimal. It is proved in [22] that M is minimal at p,
if and only if in any neighborhood V of p, in M there is an analytic disc A(L)

attached to V of sufficiently small norm such that its real denvanve [A(é)], =1

does not lie in T, M. Here we have used the notation { = ¢ + in, ¢, qe Rand {ed.
Since T, M can be regarded as a (real) hyperplane passing through p,, it separates
cr+t into two real half-spaces. We introduce the following.

Definition. Let M be a smooth hypersurface minimal at p,. We shall say that M is
minimally convex at p, if there is a neighborhood U of Po in M and a side of the

hyperplane T,M in C** ! such that the real derwatwes [A(é)]l ¢=1 lie on that side

or in Ty M for all analytic discs A of sufficiently small norm attached to U and
passing through p,.

The notion of minimal convexity generalizes that of pseudoconvexity and is
studied in more detail in Sect. 1 and Sect. 7.

Trépreau [21] proved that every CR function defined in a neighborhood of
Po € M extends holomorphically to at least one side of M if and only if M is minimal
at po. The following, the proof of which is essentially contained in the work of
Tumanov [22], will be used to reduce the study of a self CR mapping of M to either
the case where the mapping extends holomorphically or M is minimally convex.

Theorem 1 Let M be a smooth, real hypersurface in C**', and assume that M is
minimal at py. Then one of the following two conditions holds.

(i) M is minimally convex at py.

(i) Every CR function in a neighborhood of po in M extends holomorphically to
a full neighborhood of po in C"**.

We shall prove the following generalization of the “Hopf Lemma” concerning
CR mappings into minimally convex hypersurfaces, extending the known result for
pseudoconvex hypersurfaces of finite type. (See Diederich and Fornaess [17],
Fornaess [18], Bell [14].)

If H is a CR mapping between two hypersurfaces M and M’ in C**! we denote
by Jac H the Jacobian determinant of H considered as a mapping from the real
manifold M to the real manifold M'. Note that Jac H is independent of the choice of
local coordinates on M and M’ up to multiplication by a nonvanishing smooth
function. In all of the following results, M and M’ are smooth hypersurfaces in
C"*! and H a germ of a smooth CR map at p, mapping M into M'. We will call
H a self-map of M if M’ = M and H(po) = po-

The main technical result of this paper is the nonvanishing of the transversal
derivative of the mapping when the target hypersurface is minimally convex. This
result, which is contained in the following theorem, may be regarded as a generaliz-
ation of the classical Hopf lemma for harmonic functions.

Theorem 2 Suppose that M is minimal at p, and JacH # 0. If M’ is minimally
convex at H(p,), then the differential of H at 0 is nonzero. More precisely,

0.1) H'(TM) & TipM'.

In addition, M is also minimally convex at py.
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Note that (0.1) is equivalent to the nonvanishing of the derivative (in the
transversal direction) of the transversal component of H at p,. (See (5.1) and the
remarks above.)

Following D’Angelo (2] we shall say that a hypersurface M is of D-finite type at
Po if there is a positive integer N such that there is no nontrivial germ of a complex
analytic variety through p, with order of contact = N with M at p,. In particular,
if M is of D-finite type, then there is no complex analytic variety through po with
infinite order of contact with M. (In C2, the notion of D-finite type is the same as
that of finite type, as introduced first by Kohn [19].) Theorem 2 as well as other
results of the authors [11] will be used to prove the following.

Corollary 0.2 If M and M’ are of D-finite type at po and H(p,) respectively and M’ is
minimally convex at po, then either H is constant or (0.1) holds.

For the case of self-maps, we may make use of Theorems 1 and 2, as well as
previous results of the authors [7] to obtain a sharper result in the case of
essentially finite hypersurfaces (See Sect. 6 for precise definitions).

Theorem 3 Suppose that M is essentially finite at po, and H is a self-map of M. Then
one of the following holds.

(i) H is constant.

(i) H is nonconstant and JacH = 0,

(iti) H is a local diffeomorphism at p,.

For the case of self-maps when M is of D-finite type, we may combine Theorem
3, as well as a result in [11] to obtain the following.

Theorem 4 If M is of D-finite type at py and H is a self-map of M, then either H is
constant or H is a local diffeomorphism.

A more general result is the following.

Theorem 5 Suppose M is essentially finite at po and does not contain a germ of
a nontrivial complex manifold through any point near p,. If H is a self-map of M, then
either H is constant or H is a local diffeomorphism.

The conclusion of Theorem 5 may fail if M is essentially finite but contains
a complex manifold as shown by example in Sect. 7.

When the hypersurfaces M and M’ are real analytic, the results above, in
conjuction with previously known results on holomorphic extendability of CR
mappings (see 6], [7]) vield the following.

Theorem 6 Let M, M’ be real analytic hypersurfaces essentially finite at p, and
H(po) respectively. Suppose, in addition, that M’ is minimally convex at H(p,) and
JacH # 0. Then H extends holomorphically in a full neighborhood of py in C"*1.

Theorem 7 If M is a real analytic hypersurface of D-finite type at p, and H is
a self-map of M, then either H is constant or H extends as a local biholomorphism in
a neighborhood of p,.

The applications of Theorems 1 and 2 for mappings may be regarded as results
in unique continuation for CR mappings. Indeed, under the hypothesis of essential
finiteness, it is shown that a CR self mapping H with Jac H # 0 cannot have any
component flat at a point (i.e. all derivatives vanishing there). To our knowledge,
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these are the first general local results on mappings of nonpseudoconvex domains
which do not rely on the Taylor series of the mapping at a point. Similarly,
previously known results on holomorphic extendability of CR mappings of real
analytic hypersurfaces [5, 4, 6, 17, 7, 8] assume some nondegeneracy of the Taylor
series of the mapping at the point of extendability. It should be noted that in our
Theorems 6 and 7 above, no such condition is assumed at p,.

For simplicity we have assumed all hypersurfaces and mappings to be of class
C*; however, some results, in particular Theorems 1 and 2, can be formulated for
C* regularity with k 2 3.

1 Analytic discs, minimality, and minimal convexity; proof of Theorem 1

Let M be a smooth hypersurface in C**! and p, e M. Without loss of generality, we
may assume po = 0 and choose local holomorphic coordinates (z, w)e C"*! so that
M is given by

(1.1) Imw = ¢(z, Z, Rew),

with ¢ a smooth, real valued function defined in a neighborhood of 0 in R?"*!
and satisfying ¢(0) = 0 and d¢(0) = 0. We write s for Rew. Then M is paramet-
rized by (z, Z, 5) in a neighborhood of 0 in R2"*!, and in these coordinates TH M

. ) 0
consists of all vectors of the form )" 4y 5+ 45—, where the a; are complex
Z i

numbers.

Using the coordinates above, any analytic disc 4({) attached to a small
neighborhood of 0 in M may be written A({) = (z({), w({)), where z({) is an
analytic disc valued in C” of class C'-%(4), with z(1) = 0, and w({) = s({) + ig(z({),

TC), s(£)) with s({) satisfying the Bishop equation (see [15])
(12) s(e®) = — Ty($(z("), 2(*), s(-)) (e,

where T, u is the Hilbert transform of a function u defined on S! normalized by the
condition Ty u(1) = 0. More precisely we have

Ty u(e®) = Tu(e®) — Tu(1),

where
1 2a-¢
Tu(e') = lim o [ u(e'®=®)cot(6/2)do.
¢—0 z

Note that by the continuity of the Hilbert transform in Holder spaces we have
s(e®)e C*(S").
The proof of the following lemma is elementary, and is left to the reader.

Lemma 1.3 Let ue C*(S*) satisfy u(1) = w'(1) = 0. Then

d ; 2z u(ew)
(1.4) I Tlu(e t)|l=0 = —1/n £ Iew—_ll—zdg.
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Following [22], it will be convenient to introduce the following notation. If u is
as in Lemma (1.3) we write

- T ue®) o1 u@)
(15) Fu= —1/n £ le_.,,_uzda-asj"(c_l)zdc.

We have the following characterization of minimality and minimal convexity,
which follows closely the work of Tumanov [22].

Theorem 8. The hypersurface M is minimal at 0 if and only if for every neighborhood
U of 0 in M there exists an analytic disc attached to U, A({) = (2({), w(()) of

sufficiently small norm, with Re w({) = s({) such that #($(2({), z(£), s({))) * 0. Also,
M is minimally convex at 0 if, in addition, there exists a neighborhood V of 0 in
M such that #(d(z(0), z(0), s({))) takes only one sign, possibly O, for all discs
A(L) = (2(8), w(0)) attached to V.

Proof. The characterization of minimality is obtained by inspecting the proof of
the main theorem in [22]; see also [23]. (Details are also given in the forthcoming
monograph [12] of the authors.)) The characterization of minimal convexity is
a consequence of Lemma 1.3 and the use of the Cauchy-Riemann equations at
{ = 1 for the w component of analytic discs. (O

Proof of Theorem 1 Assume that M is minimal, but not minimally convex. Then by
Theorem 8, in any neighborhood U of the origin in M there are discs 4;({) = (z;({),
wy({)), j = 1, 2, attached to U, of sufficiently small norm, with s;({) = Re w;({) and
such that

(16)  F(d(z:(*) 21"} 51(*)) >0, and  F(d(z2(*), 22(*), 52(*))) < 0.

An inspection of the proof in [22] shows that (1.6) implies that every CR function
defined in a neighborhood of 0 in M extends holomorphically to a full neighbor-
hood of 0 in C"*!, This proves Theorem 1. O

Using Theorem 1, the following shows the connection between pseudoconvex-
ity and minimality.

Proposition 1.7 Let M be a smooth pseudoconvex hypersurface in C"**. If M is
minimal at py, then M is minimally convex at p,.

Proof. By Amar [1], there exists a pseudoconvex open set 2 = C**! with smooth
boundary dQ2 such that 32 n M is a neighborhood of p, in M. By the pseudo-
convexity of 2, there exists a function k holomorphic in © which does not have
a holomorphic extension in any neighborhood of p, in C"*!. By a standard
argument, this implies that there exists a CR function on M near p, which does not
extend holomorphically to any full neighborhood of p,. The minimal convexity of
M at p, then is a consequence of Theorem 1. O

Remark 1.8 Assume that M is given by (1.1) with ¢ = 0 in a neighborhood of 0
in R?"*!, By Theorem 8, if M is minimal at 0, it is minimally convex. Note
that M need not be pseudoconvex. Indeed, suppose that M = {(x + iy, w)
Imw = ¢(z, ) = x*(x — y)>} = C2 Then M is not pseudoconvex, since 4¢, the
Laplacian of ¢, is a homogeneous quadratic polynomial which takes both signs. It
is easy to check that M is minimal, since M is of finite type.
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Remark 1.9 Ye [24] has given an example of a tubular hypersurface, M = {(z, w):
Imw = ¢(x)} = C?, with ¢ a real-valued, smooth function on R, flat at 0, taking
both positive and negative values in any interval containing 0, such that M has the
following property. In any sufficiently small neighborhood of 0 in M there exists
a CR function which does not extend holomorphically to a full neighborhood of
0 in C2 It is easy to see that M is minimal at 0. Hence, by Theorem 1, M is
minimally convex at 0. However, M is not pseudoconvex.

Remark 1.10 Tt is not known to the authors whether conditions (i) and (ii) of
Theorem 1 are mutually exclusive. That is, we do not know of an example of
a hypersurface minimally convex at p, for which all CR functions extend holomor-
phically to a full neighborhood of p,.

2 Mappings and analytic discs

Let H be a (germ at p, of a) CR mapping from a hypersurface M = C"*! to
a hypersurface M' = C"*'. We may assume that M is given by (1.1) and similarly,
we can choose holomorphic coordinates (z', w') so that M’ is given near H(p,) by

2.1) Imw' =y(z, Z,5),

with (0) = 0, dy(0) = 0, and s’ for Re w'". Using the above coordinates we may
write H = (f}, ...,/ ¢), where the functions f},j=1,...,n and g are smooth
CR functions defined in a neighborhood of 0 in M. Since H(M) « M' we have

2.2) Imgyg(z, z, s) = ¥(f(z2, Z, ), f(z, Z, 5), Reg(z, Z, 5)),
in a neighborhood of 0 in R2"*!,

Lemma 2.3 Let A() be an analytic disc attached to U, a sufficiently small neighbor-
hood of 0 in M, and passing through Q. Then H > A extends (uniquely) as an analytic
disc attached to M’ through 0.

Proof. Since A(S') = M we have He A(S') =« M’ and H - A(1) = 0. It suffices to
show that H ° A extends holomorphically to 4, i.e., f;° A and g A extend holomor-
phically to 4. This follows from the approximation theorem of CR functions
by holomorphic polynomials [13] and the maximum principle for holomorphic
functions in 4. O

The following formula connects analytic discs attached to hypersurfaces and
their images under CR maps.

Theorem 9. Let M and M’, given by (1.1) and (2.1) respectively, be real hypersurfaces
inC"*Yand H=(f,,...,fng)=(f,g) be a CR mapping from M into M' with

H(0) = 0. Then % (0) is real and for any sufficiently small analytic disc A({) = (z({),
w({)), Rew({) = s({), attached to M, we have

29~ 20 R oo = FW (e 5 5125 5) Regle, 5 5D

(2.5) %g ©0) #($(z,2,9)) = F(¥(f (2 Z,5), [ (2, 2, 5), Reg(z, 2, 5))).
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The following, which will be used in the proof of Theorem 9, is elementary and
well known.

Lemma 2.6 Let h({) be holomorphic in A of class C*(4) with h(1) = 0. Then
F(B) = h'(1), where the integral #(h) is taken in the sense of principal value.

Proof of Theorem 9 We start with (2.2), in which we replace z by z({) and s by s({),
the components of the analytic disc attached to M and apply the operator # to
both sides of the resulting equation. By Lemma 2.3, the function {— g(z({), z({),
5(8)) = h({) extends holomorphically to 4. Since h(1) = 0, we may apply Lemma
2.6 to obtain #(h(*)) = h'(1). Since the operator £ is real, the result will follow by
computing h'(1). We have

K(l)= —ie” i[gz(O) (Z(e"’))+gz(0) (Z(e"’))+gs(0) (S(e"’))]

We claim that g.(0) = g:(0) =0 and g.(0) is real. Indeed, since g is CR and
d¢(0) = 0, we conclude that g:(0) = 0. Applying a—az to both sides of (2.2) and using

the fact that di#(0) = 0, we conclude that g.(0) = 0 also. Applying % to (2.2) and

using a similar argument, gives Im g,(0) = 0. Now (2.4) follows easily. Using (1.2)
and (1.4), we obtain (2.5) from (2.4). The proof of Theorem 9 is complete. [J

The following two elementary lemmas concerning minimal hypersurfaces will
be used in the proof of Theorem 2.

Recall that if M is of finite type at p in the sense of Bloom-Graham [16], then
the type of M at p is the length of the shortest commutator of sections of T°M near
p which, at p, lies outside THM. If M is of infinite type at every point, then M is
called Levi flat. The following is an immediate consequence of the Frobenius
theorem; the proof is left to the reader.

Lemma 2.7 If M is minimal at 0 and U is any open neighborhood of 0 in M, then M is
not Levi flat in U, and hence the set Up = {peU: M is of type 2 at p} is open and
nonempty.

Lemma 2.7 will be used in conjunction with the following,

Lemma 2.8 Let M and M’ be smooth, real hypersurfaces in C**! and H a germ of
a CR map at 0 with H{M) = M' and Jac H # 0 in any neighborhood of 0 in M. If
M is minimal at 0, and V is a small neighborhood of O in M, then the set
Vu={peV:JacH(p) % 0} is open and dense in V.

Proof. Note first that since M is minimal, by the theorem of Trépreau, the
components f,...,f, and g of H extend holomorphically to at least one side
of M. Let Fy(z,w), ..., F,(z, w), G(z, w) be their holomorphic extensions. Then
the complex Jacobian determinant D(z, w) of this holomorphic map restricts to
a CR function 4 on M. Since the zeros of d and of Jac H are the same, as can be
easily checked, we conclude that d # 0 and hence by unique continuation does not
vanish on any open set on M. This proves the lemma. O
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3 Consequences of minimal convexity for analytic discs attached to M

As in Sect. 1, we write 7, for the normalized Hilbert transform on S! and assume
that M is given by (1.1). Following [22], for an analytic disc attached to M,
A°(0) = (2°(8), wo(D)), 50(0) = Rew®({), of sufficiently small norm, we define the
function v(e®®) on S* implicitly by

3.9) v(e®) =1+ Ty(v(*)s(z°(*), 2%(* )y 50(- ))(€®).

Indeed, the existence and uniqueness of v can be proved by showing that for a given
function a(e®) with small norm the mapping vi—1 + T;(va) is a contraction in
a closed ball around the constant function 1 in C!**(S!). The main result of this
section is the following, which is crucial for the proof of Theorem 2.

Proposition 3.2 Let M be minimally convex at 0 and A = (z° w®), s = Rew?, an
analytic disc attached to M with sufficiently small norm. If #(¢(z°(*),

z%(*), so())) =0, then the 1 x n matrix-valued function
(3.3) e+ v(e)$.(z°(e"), z°(e™), so(e™))
extends holomorphically to A.

Proof. Let z'({) be an analytic disc in C" with z!(1) = 0. For 1¢ C small, we define
a family of analytic discs attached to M through 0 given by

AL = (2°@) + 42! (), wa(0)),

with

BG4 waill) =50 + id(2°(0) + 221 (0), 2°(0) + 22" (©)), sa(0),  LeS.

Here s, is given by the Bishop equation (1.2) in which z is replaced by
2, =2% 4+ 1z, ie.

(33)  sil)= = Tu(P(2°C) + 22" (*), 2°C) + 22' () s2()N(),  LeSt
We differentiate the Eq. (3.5) and define u({) by

69 w0 =2 Oaes,

so that u({) satisfies the equation
(3.7) u= — Ti(au + b),

where a({) = $,(z°(0), z%(0), 5o(£)) and b({) = $.(z°(0), z%(0), 50(L)) 2 (L), for { e S,
The following is proved in [22] (see also [12]):

Lemma 3.8. Let a, be C*-*(S*) with a(1) = 0 and b(1) = b’'(1) = 0 and u, v given by
u= —T(au + b) and v =1+ Ty(va). Then

(3.9) Flau + b) = #(vb).
Furthermore,
(3.10) u= —(1+a?)"[v" ! T,(vb) + ab].
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We may now complete the proof of Proposition 3.2. Since M is minimally
convex at 0, we may assume without loss of generality that #(¢(z, 2, s)) 2 0 for all
choices of small analytic discs A({) = (2({), w({)) attached to M. Let

00, A) = T (d(z° + 4z, 2° + Azl, ;).

Then Q(4, £) is a continuously differentiable function in a neighborhood of 0 in C.
Since by assumption Q(0,0) = 0 and Q(4, 2) = 0, Q has a local minimum at 0 so

that ‘;—g(ﬁ, 0) = 0. It now follows from (3.6), (3.7) and (3.9) that

(3.11) T ()22 ) 2°(*), so(*)) 2* (*)) = 0,

for all analytic discs z'({) valued in C" with z'(0) = 0. For any entire function k({)
valued in C", take z! = ({ — 1)2k({), in (3.11) to conclude that v({) ¢.(z°({),

2°(0), so({)) extends holomorphically. This completes the proof of Proposition
32.0

4 Construction of a family of analytic discs parametrized by C"

Let M and M’ be as in Theorem 2, with holomorphic coordinates (z, w) and (z', w')
as in Sect. 2. Here again we write H = (f, - - ., f», 9) = (/; g) so that (2.2) holds in
a neighborhood of 0 in R?"*!,

Before beginning the proof of Theorem 2, more preliminaries are needed.

Let E be the Banach space of functions z({) valued in C", z(1) = 0, holomorphic
in 4 and of class C''*(4). Denote by B, the open ball in E, centered at 0, of radius &.
If ¢ is sufficiently small, we define the map y: B, —» M as follows:

1z A1),

where A(0) = (z(8), w({)) is the corresponding disc attached to M through 0. It is
proved in [22] that since M is minimal, for every positive ¢, x(B,) is a neighborhood
of 0 in M. Note that by the definition of ¥, tky’(z) = 2n for all ze B,, where x'(2)
denotes the Fréchet derivative of y at z and rk denotes rank. Using the CR map
H = (f, g), for ¢ sufficiently small, we define the map @: B, -~ C" by @ = foy, ie,

4.1) @:zf(z(—= 1), z( = 1), s( = 1)),
where s({) = Rew(().

Lemma 4.2 For every positive ¢ sufficiently small there exists yo € C", and O, an open
neighborhood of yo in C" and a map

4.3) Oay—z(y,7;')eB,
of class C! satisfying
44) 0@ 7)) =7in 0.

Proof. We shall first show that there exists z% e B, for which rk @'(zo) = 2n. Since
x(B.) is a neighborhood of 0 in M, we choose a set U open in M satisfying
0e U c x(B,). By Lemmas 2.7 and 2.8 the set U Uy consisting of all pe U for
which M is of type 2 at p and Jac H(p) # 0 is a nonempty open subset of U. Let
p*eUrn Uy and a disc z* € B, such that y(z*) = p*. We need the following.
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Lemma 4.5 For every positive & sufficiently small and every z* e B, such that M is
minimal at y(z*), any open neighborhood B* of z* in B, contains a disc z° for which
rk ' (2%) =2n + 1.

Proof. We reason by contradiction. If no such z° exists, then by the above remarks,
rk x'(z) = 2nin a full neighborhood B* of z* in B,. It is also proved in [22] that for
every z€ B,, TyyM < y'(2) E. Hence by the implicit function theorem y(B*)is a 2n
dimensional CR manifold passing through y(z*), contradicting the minimality of
M at this point. This proves Lemma 4.5. O

We may now complete the proof of Lemma 4.2. Since M is of type 2 at
#(z*) = p*, and hence minimal at that point, we may apply Lemma 4.5. We choose
B*, a neighborhood of z* in B, such that y(B*) < Uz~ Uy and choose z°¢ B*
given by Lemma 4.5 so that rk x'(z°) = 2n + 1. We put go = x(z°) and ¢}, = H(qo).
We claim that the rank of ©’(z°) is maximal, ie. rk @'(z°) = 2n. Indeed, since
@ =foy, we have, by the chain rule, @'(z°) = f"(x(2°))x'(z°). Since H is a
diffcomorphism at g, (by the choice of B* above), £ is of rank 2n at y(z°) = g, and
the claim follows, since rk y'(z°) = 2n + 1.

Hence there is an open neighborhood B° with z°eB° < B, such that
rk ©'(z) = 2n for all ze B®. We put 7, = @(z°). Now for @ a sufficiently small
neighborhood of y, in C”, by the implicit function theorem we can invert the map
© near y, and find a map y— z(y, 7; {) satisfying the conclusions (4.3) and (4.4) of
Lemma 4.2. O

From now on we fix ¢ sufficiently small so that Lemma 4.2 can be applied. We
introduce families of discs on M and M’ respectively parametrized by ye @, where
O is given in Lemma 4.2, as follows. We set A(y, 7; ) = (z(y, 7; {), w(y, 7; {)), the
disc attached to M passing through 0, with z(7, 7; {) given by Lemma 4.2 and ye 0.
By Lemma 2.3, the image of a disc attached to M under the CR map H is a disc
attached to M’. We set

(4.6) AT =HA®GTO) =070, W, 7:0))

which is a family of discs attached to M’ through 0. As usual, we set s(y, 7;{) =
Rew(y, 7;{) and s'(, 7; {) = Rew’(, #; {). Note that we have by Lemma 4.2 and
the definitions,

4.7 (M- D=0 =y, 7e0.
Note also since all the discs pass through the origin we have
(4.8) Ay, 7:1)=0, A'(7,7;1)=0.

These families of analytic discs will be crucial in the proof of Theorem 2.

S Proof of Theorem 2

We continue with the notation and assumptions of Sect. 4. We take {E’
i

35 %} as a basis of CTy M, the complexified tangent space to M at 0, and note
J
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that { aa aa } form a basis of CT§ M. We write a similar basis for CTo M’ and

CTyM’. Since, by Theorem 9, = (0) is real, condition (0.1) is equivalent to

P
(5.1) §@¢a

It is an immediate consequence of Theorem 9 that if (5.1) does not hold, then

(5.2) FW(f(z 2,5),f(z, % 5), Regl(z, Z,5))) = 0,

for all analytic discs A(L) = (z({), w({)) attached to M. In the course of the proof of
Theorem 2 we shall reason by contradiction; hence we assume that (5.2) holds for
all analytic discs.

The main step in the proof of Theorem 2 is the following.

Proposition 5.3 Let A'(y, 7; {) be the family of analytic discs attached to M’ given by
(4.6). If (5.1) does not hold, i.e. if -‘;%(0) =0, then

(5.4 Osy—A'(y,7; — )eM’
parametrizes a complex holomorphic hypersurface contained in M’
Proof. By (4.6) and (4.7), we have
(5.5) AT —=D)=0sSh7 - D+ hs'(7 — 1))
Hence the proposition will be proved if it is shown that

Yy s (7 — D+ (87 — 1)

is holomorphic, ie,forj=1,...,n

(5.6) ’5-_ [S 7 - l) + “f’(}’, 7 S‘(']’, 7, — l))] =0, YE(D

To prove (5.6), we apply the Bishop equation (1.2) to M’, to obtain
(5.7 S(17.0= =T 702007508 (075 N().

Differentiating (5.7) with respect to §; we obtain the system

o;
where .., .., Y, inside the Hilbert operator 7', are taken at

(58) %m-;:cw —Tl(w % o v. f'+~/zs = )(c:),

iz 7S (n7:0)

dz' 0z’ os'
and — 3 7 5, at (7, 7:°)
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We shall compute %(?’ 7;{) for {eS™. For this, we apply Lemma 3.8 with
i

(5.9) u(l) = g—;j(v, 70, al) =Y Z(n 70,2 (3,7:0), 5' (%, 7, )

and

(5.10) b)) = (7 0. 2(n 75 O s (0, 5 C))Z—;(% 70
2

+ ¢£'(ZI(?, )7; g)s z'(y, 7; g)s S'(?, 'Fa C)) g_:;; (7, f; C)

Note that the assumptions of Lemma 3.8 are satisfied; in particular, a(1) = 0,
b(1) = b’(1) = 0, by (4.8) and the vanishing of di at 0.

As in Lemma 3.8 we denote by v({) the unique solution of the implicit
equation v =1 + T,(va). We note that since a is real valued, so is v. An explicit
solution for u is then given by (3.10). In order to calculate T (vb) explicitly, we shall
use, for the first time, assumption (5.2) and Proposition 3.2, applied to M’ instead of
M, ie., y instead of ¢, 2'(y, 7; {) instead of z°({), and s'(3, 7, {) instead of 56(£), in

(3.1) and (3.3). We conclude that v({)¢.-(z'(y, 7: {), 2(y, 7; ), 5'(3, 7, {)) extends
holomorphically to  the unit disc 4. Since v is real,

v(OW=(2'(y, 75 0, 2'(, 75 ), 5'(9, §, £)) extends antiholomorphically to 4. We make
use of the following elementary observation: if c(e™) is defined on S* with ¢(1) = 0,
then T;(c) = — ic if ¢ extends holomorphically to 4, and T,(c) = ic if ¢ extends
antiholomorphically. Since

MOV 0550, T T D 0. 0) 3 (3 D)
extends holomorphically, while

OV (0 076 T 0 5 D) 5 (75D
extends antiholomorphically, we have

G11)  Tib)O) = — Q2 7 O 2’ (0 75 01, 8' (9, 73 ) g—; %70
J

-, - .02
+ W20, 2 (0 7 0,8’ (1 7. 0) 7, (» 7L
J
We shall use (3.10) to evaluate u( — 1). Note first by using (4.7),

’ a"’
6512 (5 -1)=0, and B 5—1)=op 1<jk<n
o7; o7;
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Using (3.10), (5.7), (5.9), (5.10), (5.11), (5.12), we obtain

u( _ 1) = ﬁ( Se l) = - hpz',’(y’ )7’ S'(’[, ?_s - l))[l — i“’:'(}’, ?! S'(?, 7’ — 1))]
& L+ 9207503, — D)

_ i‘ﬁz‘,(?’ }T’ S'(",’, 7: - l))
(5'13) B 1 + i‘ps'(}’s ?—s sl(?a }7» - l)).

To complete the proof of (5.6), we use (4.7) and (5.13) to obtain

ai- (i (3, % 5'(, 7> — )= i'lli,(ys sy, — 1))
7i

. e = os'
+ M’s’(y, 7S (?s 7= l))’a_- ('}’, 7= 1)
v
i'l’z' (7! ?9 S’('}’, }7, - l))
5.14 = 2L D .
19 L+ i (3, 5 8'(n, 7, — 1))
This completes the proof of (5.6) and hence of Proposition 5.3. [J

End of proof of Theorem 2 Suppose that % (0) = 0. Applying Proposition 5.3, we

obtain a complex hypersurface through go = H(go) = A’(¥0, %0, — 1), which
would imply that M’ is not minimal at 5. However, by the choice of g, in Sect. 4,
M is of type 2 at g and H is a local diffeomorphism at go. Hence M’ is of type 2 at
g’ and therefore minimal at g5. This contradicts the existence of such a complex
hypersurface through g5 and completes the proof of Theorem 2. O

Proof of Corollary 0.2 We let M, M’ and H satisfy the hypotheses of Corollary 0.2.
It is proved in [11, Corollary 0.4] that if H is a germ of a CR map between two
hypersurfaces M and M’ of D-finite type, then either H is constant or Jac H # 0.
Hence, since D-finite type implies finite type, which implies minimal, we may apply
Theorem 2 to obtain the result. O

6 Proofs of Theorems 3 to 7

Proof of Theorem 3 Assume that M and H satisfy the hypotheses of Theorem 3,
and assume that p, = 0. We may assume that neither (i) nor (ii) holds, and show
that (iii) holds, i.e., we may assume that Jac H # 0 and we must show that H is
a local diffeomorphism at 0. Since M is essentially finite at O (see precise definition
below), it is of finite type at 0 and hence minimal there. By Theorem 1, M is either
minimally convex at 0 or every CR function extends to a full neighborhood of 0.
We shall first assume M is minimally convex at 0. By Theorem 2, since JacH # 0,
(0.1) holds. We shall now use some results from previous work of the authors [7].
For this, we introduce the notion of formal transversal coordinates and formal
transversal components.

Let M be a (germ of a) smooth hypersurface at 0 in C"*! given by p(Z, Z) =0,
where p is a smooth, real-valued function defined in a neighborhood of 0 in C"*!
with p(0) = 0 and dp(0) # 0. By a formal holomorphic change of variables we shall
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mean a choice of n + 1 formal ‘holomorphic power series, with no constant terms,
in n + 1 indeterminates Z = (Z,, ..., Z,,,) denoted (Z:(2),...,Z,41(Z)) and

. o . .

satisfying det (6_2%1 (0)) % 0. One can show (by using the formal implicit function
k —

theorem) that if p(Z, Z) denotes also the Taylor series of p at the origin in 2n + 2

indeterminates Z,,...,Z,.y, Z,,...,Z,4+,, there exists a formal holomorphic

change of variables Z(Z) such that
6.1) P(Z(2),0) ~ (2)Z sy, 2(0)%0,

where az(g~ ) is a formal holomorphic series. We write Z,,, =w and
(Zy,...,2,) =2z Then wis called a transversal formal coordinate for M. We also
define the formal power series A(z, w,{,t) ~ p(Z(z, w), Z({,7)). We write
p(2,0,,0) ~ ¥ a,(2){* Recall that the hypersurface M is called essentially finite at
0if

(6.2) dimcC[[2]]/(a,(2)) = esstype(M) < oo,

where (a,(z)) denotes the ideal generated by the a,(z) in the ring of formal power
series in n indeterminates C[[z]]. Note that the notion of essential finiteness and
the essential type of M defined in (6.2) are independent of the choice of formal
holomorphic coordinates.

Note that if u is a CR function defined on M near 0, and (z, w) are formal
coordinates as above, there is a (unique) formal holomorphic power series %(z, w)
associated to the Taylor series of u in an obvious way. Now let H: M — M’ be a CR
map between two hypersurfaces in C"*! and assume that (z, w) and (2, w') are
formal coordinates for M and M’ respectively satisfying (6.1). In these coordinates
we associate to H (n+ 1) formal holomorphic power series #(z,w)=
(Filz,w), ..., F,(z,w), 9(z,w)). Then %(z,w) is called a formal transversal
component of H. Recall that H is of finite multiplicity at 0 if

(6.3) dimcC[[2]1/(F1(2,0), . . ., Fu(z,0)) = mult(H) < oo,

where (#4(z,0), . .., #,(z,0)) denotes the ideal generated by the formal series
Z iz, 0). In this case, mult(H) is called the multiplicity of H and is independent of
the choices of formal coordinates for M and M’. By [7, Theorem 5] if M is
essentially finite, and a transversal component % of H does not vanish identically,
then M’ is also essentially finite, H is of finite multiplicity and the following
multiplication formula holds:

(6.4) ess type(M) = (mult(H))(ess type(M’)).

We may now proceed with the proof of Theorem 3 in the case where M is
minimally convex and (0.1) holds. As mentioned in Sect. 5, (0.1) is equivalent to

(5.1), and hence g—i({)) % 0. Here we have used the coordinates and notation

introduced above, i.c., ¥ is a formal transversal component of H. We may use (6.4)
above with M = M’ to conclude that the multiplicity of H is one. This is equivalent

to the invertiblity of the matrix (% (0) }, which, together with T (0) % 0 implies
k
that Jac H(0) + 0. Hence H is a local difeomorphism.
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Assume now that M is not minimally convex at 0, so that the CR mapping
H extends holomorphically to a full neighborhood of 0 in C*"*?! by Theorem 1.
Since Jac H # 0, by the holomorphy of H, it follows that the holomorphic function

det Z—g(Z) #0, (ZeC"*'), and hence its Taylor series at 0 vanishes at most of

finite order. Since this nonvanishing property is clearly invariant by holomorphic
and formal holomorphic changes of coordinates, we conclude that no formal
transversal component of the CR map H at 0 vanishes identically. By [7, Theorem

4], we conclude the stronger condition that %(0) % 0, where we have used the

same notation as above. The rest of the proof is now the same as that of the
minimally convex case. OJ

Proof of Theorem 5 Assume that M is essentially finite at the origin with no germ
of a complex manifold contained in M through any point in some neighborhood of
the origin, and that H is a self CR map of M with H(0) = 0. From the conclusion of
Theorem 3, to complete the proof of Theorem 5, it suffices to show that (ii) of
Theorem 3 does not hold, i.e., if H is nonconstant, then Jac H # 0. By [11, Theorem
3], a CR mapping from an essentially finite hypersurface to another essentially
finite hypersurface which does not contain germs of holomorphic manifolds, as
above, is either constant or has Jacobian not identically zero. Hence Theorem
5 follows. O

Proof of Theorem 4 Theorem 4 is an immediate consequence of Theorem 5. Indeed,
D-finite type implies essentially finite (see [3]), and by the openness property
proved in [2], a manifold of D-finite type cannot contain a germ of a complex
manifold through any point. Hence all the hypotheses of Theorem 5 are satis-
fied. O

Theorem 5 is more general than Theorem 4. Indeed, an example of a hypersur-
face M satisfying the assumptions of Theorem 5 but not of D-finite type is given in
Sect. 7.

Proof of Theorems 6 and 7 We recall first the following result proved in [6]
concerning the holomorphic extendability of a CR map: If M and M’ are real
analytic hypersurfaces in C"*! essentially finite at 0, and H a smooth CR map from
M into M’, H(0) = 0, such that (0.1) holds, then H extends holomorphically to a full
neighborhood of 0 in C**!. It is clear from Theorems 2 and 5 that these conditions
are satisfied under the hypotheses of both Theorems 6 and 7 (unless H is constant
in Theorem 7). Hence Theorems 6 and 7 are proved. [

7 Remarks and examples

Let M be the flat hypersurface in C?, i.e. the hypersurface given by {(z, w)e C:
Imw = 0}. The mapping H = (z, w?) is a CR self map which is a bijection of
M onto itself, but which is not a local diffeomorphism at 0 although JacH # 0 in
any open set in M. Note that (0.1) fails for this mapping.

It follows from Theorem 4 that if H is a CR self mapping from a hypersurface
M < C? into itself, then if M is of finite type, H is either constant or a local
diffeomorphism. Indeed, it should be noted that in C? the conditions of finite type,
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D-finiteness, and essential finiteness coincide. For a real analytic hypersurface,
these notions also are the same as minimality, but a smooth hypersurface in C2 can
be minimal without being of finite type. The following example shows that the
condition of finite type cannot be replaced by that of minimal in Theorem 4.

Example 7.1 Let ¢(y) be a smooth real valued function defined on R with ¢(y) > 0
for y < 0 and ¢(y) = 0 for y > 0. Consider the hypersurface in C? given by {(z, w):
Im w = ¢(y)} where z = x + iy. It is easy to check that M is minimal at 0, but not
of finite type there. Since ¢(¢(y)) =0 for yeR, the holomorphic mapping
(2, w) = (w, 0) restricted to M is a CR self map of M, which is neither constant
nor a diffeomorphism. Note also that M is minimally convex, by Remark 1.8, but
Theorem 2 does not apply since JacH = 0.

For a real analytic hypersurface M < C? which is of infinite type at 0, i.e. not
minimal, but not flat, there is always a nontrivial CR self-map H with JacH = 0.
Indeed, since M is of infinite type, one can find local holomorphic coordinates
(z, w) such that M is given near 0 by (1.1) with ¢(z, Z, 0) = 0. It suffices then to take
the self mapping to be H = (z, 0). The following example shows that in the infinite
type case the mapping need not be a diffeomorphism even if we restrict attention to
the case where Jac H # 0.

Example 7.2 Let M be the hypersurface in C? given by w = we'l*1*. It is easy to
check that this equation does define a real analytic real hypersurface which is

neither of finite type nor flat at 0. The mapping (z, w)r—»(ﬁz, w?) restricts to a CR
self map of M with Jac H # 0 but for which (0.1) fails.

For C"*! with n > 1 the conclusion of Theorem 5 fails to hold if M is assumed
to be only essentially finite (and hence (ii) of Theorem 3 can occur) as is shown by
the following example.

Example 7.3 Let M < C? be given by Imw = |z,|® — |z,|*> and H the CR self
mapping given by (f},/2,¢9), with fi =f, =f and g =0, where f is any CR
function defined on M. Note here that M contains the 1-dimensional complex
manifold defined by w=0 and z, = z,. It is, however, essentially finite with
nondegenerate Levi form.

Remark 7.4 In Example 7.3 H(M) is contained in a submanifold of lower dimen-
sion in M’ and is therefore of measure. More generally, by using Sard’s Theorem,
we may replace the hypothesis Jac H # 0 in Theorems 2 and 6 by the assumption
that there is a neighborhood U of p, in M such that H(U) has positive measure
in M'.

To show that Theorem 5 is more general than Theorem 4, as mentioned in the
introduction, we give an example of a hypersurface satisfying the hypotheses of
Theorem 5 but not of Theorem 4.

Example 7.5. Let 0(x) be a real-valued smooth function defined on R with the
property that @ is flat at the origin (i.e. 9(0) = Oforallj = 0, 1, . . . ), and & not real
analytic at any x€R. (Such a function exists by the Baire Category Theorem.) Let
M be the hypersurface in C3 defined by

(7.6) Imw=x? — x3 + 8(x,),
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where the variables in C? are (z,, z;, w) and z; = x; + iy;. M is essentially finite
in a neighborhood of 0, since it has a nondegenerate Levi form. However, it is
not of D-finite type at 0, since the holomorphic manifold defined by w =0,
z, = z, is tangent of infinite order to M at 0. We claim that there is no germ
of a complex manifold contained in M at any point. For this, we reason by
contradiction. Assume that {—y({) = (z,({), z2({), w({)) is a holomorphic curve
contained in M defined near { =0 in C, with y'(0) % 0. We write { ={ + iy

and z;({) = x;(&, n) + iy (&, n) and w(l)=s(S,n) +it(S,n). Then we have,
by (7.6),

(7.7) t(& ) = (x1(& ) — (x2(&, M) + O(x1 (&, m))

for ¢ in a neighborhood of 0 in C. Since it is easy to see that x; cannot be
constant, since y’(0) + 0, we obtain from (7.7), using the implicit function theorem,
that & must be real analytic at any point x,(¢, #)) at which a derivative of x, is
nonzero.
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