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ANALYTIC APPROXIMATION FOR HOMOGENEOUS SOLUTIONS
OF INVARIANT DIFFERENTIAL OPERATORS ON LIE GROUPS

M. S. Baouendi* Linda Preiss Rothschild**

0. Introduction and Statements of Results.

A classical result by Malgrange (3] states that if P(D) 1is a
differential operator with constant coefficients in R®, then any
solution u of the homogeneous equation P(D)u = 0 is a limit of
exponential-polynomials solutions of the same equation.

Suppose now that P(x,D) is a differential operator with
analytic coefficients in an open set of R®. Assume that the
principal symbol is nowhere identically zero. It is natural to ask
the following gquestion:

Is it true that any solution of P({(x,D)u = 0 is locally a limit
of real analytic solutions of the same equation?

The answer to this question is not known. However an affirmative
answer is given in Baouendi-Treves ([2] when P has simple (complex)
characteristics. (See also [1] for first order overdetermined
systems). We prove in this paper that the answer is also affirmative
for left invariant operators defined on a general Lie group.

Theorem 1. Let L be a left invariant differential operator defined
on a Lie group G. For every open set U < G, neighborhood of the

identity e € G, there exists another open neighborhood of e,
W c G, such that if u is a distribution on G (u € J'(G))
satisfying Lu = 0 in U, then there exists a sequence u,6 of

real analytic functions defined in W and satisfying:

(1) Lu, =0 in W
(ii) limu, =u in 2Z'(W).
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Furthermore if u is of class Ck, k = 0, then the convergence in
(ii) is in CF(W).

Let xl....,xn be a basis of 8, the Lie algebra of G. If «

is a multi-index, a € 22 , as usual set

o]
o _ 1
Gj ,X —xl ...X

n

lel =

-3 n

1

Note that a left invariant differential operator on G is of the
form

_ a
(0.1) L= Z a X

| o] sm

We can state a somewhat more general result than Theorem 1.
Consider a differential operator on (-7,T) x G, (T > 0), of the form

(0.2) p=3"+ I a, (0)x%3,
© lal+jsm 00
j<m

where aj o 3are real analytic functions defined on (-T.T).
’

Theorem 2. Let P be a differential operator on (-T,T) * G of the

form (0.2). For every open set U C G, neighborhood of e, there

exists W, another open neighborhood of e, and € € (0,T), such
that if u € 2'((-T,T) x G) and satisfies Pu = 0 in (-T,T) * U,
then there exists a sequence 1, of real analytic functions in

(-e,e) x W satisfying

(i) Pu, =0 in (-e,c) x W,

(ii) limu =u in J'((-e,€) x W) .

Furthermore if u is of class Ck, then the convergence in (ii)}

in C((-e,e) x W).

I. Proof of Theorem 1l.

Before starting the proof we need to introduce some notation-
Denote by dg a right Haar measure on G. If £, h € Ll (c,d9)
define the convolution fsh by the integral
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(I.1) (£xh) (x) = J f(xg-l)h(QJdg-
G
If we set
(I.2) ) = £(x7Y, vx € G,
then making the change of variable g' = gx-l, we also get
(1.3) (£+h) (x) = f f(9)h(gx)dg.
G

Note that if f jg a smooth function defined in an open
neighborhocod V of the identity e, and h is a distribution with
compact support in V! then (I.1) (or (I.2)) is defined for X in
an open neighborhood W of e {depending only on V and the support
of h, we may take W satisfying W({supp h)-l cc V).

If L is a left invariant operator on G, ucsing (I.3) we see
that
(.4) L{(f«h) = f«(Lh).

Recall that xl,...,xn is a basis of g§. rLet V be a
sufficiently smal] open neighborhood of the identity in G such
that the exponential map Exp is an analytic diffeomorphism from a
neighborhood of @ in 8 onto V. For simplicity we assume

V=V " For x €V we may write

X = Exp(slx1 ...+ snxn) = Exp(s.X)
with g = (Sl,---'sn) € Rno The map

(I.5) S:V~R", s(x)=s,

is then an analytic diffeomorphism of v onto a neighborhood V of
the origin in R®R".

There exists an analytic function 9, 0 ¥ 0, defined in V such
that if u is, Say a continuocus function with compact support in
V, then

(I.6) f u(g)ag=f uts™ (e} )0 (¢)at.
G R®
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For v € 2+ and x € V, set

1y 2

(1.7) £,(x) = (—")“ow) lgvo (86 ™
(3
n 2 _ a 2 . . .
(If s ewR, s = 2 sj). Note that fv is an analytic function
v

defined in V and satisfies fv = fv‘
Lemma 1. Let h be a distribution with compact support in V.
There is an open neighborhood of e, W € G, depending only on the

support of h, such that

JLm (£ eh) [y = hly, in g'(wW).

k

Moreover if h is in C then the convergence is in ck(W).

Proof: Let wl be an open neighborhood of the support of h
satisfying
wl cv.

We may choose an open neighborhood W of e in G satisfying

-1

(I.8) W,

cc V.

{Recall that V = V_l).

Assume first that h 1is a continuous function (with compact
support in wl)' Using (I.3), (I.7) and the fact that fv = f

- v
we get for x € W.

n _ _a2 2
(£,xh) (x) = (/—\i) o (0) L I e~V (S(gh) h{gx)dg ,
" G

and making use of (I.5) and (I.6), we obtain for x € W

2_2
(£, %h) (x) = (_".)“c(o)'l j e™ S h((Exp s.X)x)0(s)ds.
m /D

Changing variabies in the latter (vs = t) vyields

-1 2
-20)) -t £ t
(I.9) (£,+h) (x) = ;375—— J; e " h({Exp 7 .x)x)c(;)dt -

R
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A limiting argument in (I.9) easily shows that (fv*h)lﬁ' converges
uniformly to hig .

If in addition h 1is of class ck, k > 0, since we have

X*(£ +h) = £ «(x%n), Va € 20 ,

we also get the convergence in Ck(ﬁ).

Assume now that h 1is a distribution with compact support in

W . Let ¢ € C:(W). since V=vl we get from (I.8)

-1

W, . W cc v

1°
Therefore it follows from the first part of the proof of this lemma
that fv*¢ converges to ¢ in Cw(wl). On the other hand, using
(I.1l) and (I.3) we have

J (f,#h) (2} (x)dx = I h(g)(fv*¢)(9)dg-
G G

This shows that f sh converges to h in 2w . Q.E.D.
Lemma 2. If the open set V in (I.5) is small enough then for

every pair of open neighborhoods of e, V0 and Vl, vl cc Vo
there exists an open neighborhood 0 of the origin in c® such

cc v,

that if h is a distribution with compact support in V and

Ol
h =0 in Vl, then for every v € 2.,

(£, *h) o5~

extends holomorphically to @, and converges uniformly to zero in
0 as v » =,

Proof: Let us first state the Baker-Campbell-Hausdorff formula in a
form which will be needed further (see Varadarajan (4] for example).
For s, t € R" sufficiently small we have

(I.10) Exp(s.X).Exp(-t.X) = Exp(u.X)

with u = (ul,...,un) e:m“, and for j=1,...,n,
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a.B

. = UL (s, =g, - t. + .
uJ uJ(s t) t cu’s’Jt s* ,

z
lajzl
|8|=1

where ca,B.j €R and satisfy

la|+]8+1
lca,B,jI s M

Let V be the open set in (1.5) (v=vly, gue may assume that
V is small enough so that for all X, g €V, Iif

Si{x) = g, S(g) = ¢,

then the power series (I.11) is absolutely convergent.

Now let h ¢ 5'(vo), h 20 in Vi, with vV, =V, = v
Using (I.l) and (I.7) we get, for x near e

2 -1,.2
h (X) = (£ «h)(x) = © [e“’ (S(xg ™))% (g1aq
v v v
G

n -

with Cv = (42) o{0) l. Writing x = Exp(s.X), g = Exp(t.X)

VT
& 1l

h = nes™?, R

v and using (I.6) we obtain

= hvss'

2 2
H\) (5) = cv j e‘V [S(Exp(s.X)Exp(-t.X))] h(t)a(t)dt.
Rn

Making use of (I.10) yields

~ _22~
(.12) h,(s) = c f e Y R(tyore)ae ,
n
R

where u = (ul,...,un) is givén by (I.11). Since h vanishes in
vl, we may assume that
supp h < {t ¢ RY, A < lt] < B}, A > 0.

We must show that E; defined by (I.12) extends holomorphically to
a neighborhood of 0 in " (independent of V), and there converges
to 0 as v + «,
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Indeed for s, S € ]Rn,

(I.13) R (s+is) =

and s sufficiently small.

(1.14) vy = sy ¥ i'é'j

sufficiently small, we get from (I.1l2)

S

[

with v = (vl,...,vn), and v.
putting sy + igj instead of

55

t., +

Set

Q = Re v

A<|t]|=<B

is the expression obtained by
in (Ioll) ’
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2.2
eV vV Rit)o(r)ae,

|8]=1

2

It is easy to check that there is 60
6§ € (0,8,) then for Is| = &, |s| < &

Note that the latter is absolutely convergent for

i=1

>0 and C > 0
and A g |t|] £ B we have

Q=2 (a-8)2 - cs.

(I.15) Q=2

2

2

(I.16) Ih, (s +i8) | s cc

sup
ja|s2

Choosing & € (0,60) small enough we get

Since K is a distribution with compact support in
{A < |t] < B} it follows from (I.1l3) that there exists
% € 3_ such that for |[s| < §, Is| = &

Az|t|=sB
|s],|S|=é

195
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!

where C' > 0 and N € 7, are independent of v. Therefore (I.15)
and (I.l6) imply that for |s| < 4§, |s'| s &

5l

~ 2,2 4

(1.17) F (s +i8)| s ctole™ /2 g
{

(I.17) yields the desired result by taking g
0=1(s +is e ¢, |s| < & |s] < 6}. Q.E.D. 4

We are now ready to prove Theorem 1. Let u be as in Theorem 1 <

i.e. %
u€P(G), Lu=0 in U, e €UCG. ]

G

Let V be a sufficiently small open neighborhood of e, V&G, in ?
which Lemmasl and 2 are valid. Take § € cg(V), £ =1 near e. ?
Set E
@

(I.18) h = ¢Cu, r = Lh. i
Both h and r are distributions with compact supports in V. %F
Furthermore r = 0 in some neighborhood Vl of e, Vl cc V. Since _%
1. commutes with the convolution with fv we get from (I.18). b
(I.19) L(fvth) = fv*r . &
i

i

By Lemma 1, we know that fv'h converges to h in a neighborhcod W Ef
of e. Lemma 2 implies that fvur extends holomorphically to a ?
complex neighborhood of e (independent of h and v) and there f@
converges to zero. By the Cauchy-Kovalevski theorem and by shrinking "ﬁ
W Aif needed, we may find a sequence kU of analytic functions in W {ﬂ

converging to 0 (in the space of analytic functions in W) and ;E
i

satisfying

(1.20) Lk, = £ *r.

[In fact we can require that the Cauchy data of kv be zero on a
non-characteristic analytic hypersurface passing through e].

Put

u, = fvth - kv .




(I.15)

Q.E.D.
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It follows from (I.19) and (I.20) that

Luv =0 in W.

On the other hand
(I.21) limu, = h in J'(W) ;

since h = u near e (where £ £, see (I.8)), the proof of
Theorem 1, when u 1is a distribution, is complete.

If u is of class Ck, it follows from Lemma 1 that the

convergence in (I.21) is in Ck(W). Q.E.D.

II. Proof of Theorem 2.

The proof cf Theorem 2 is similar to the proof of Theorem 1.

Let u € J'({-T,T) x G) satisfying

Pu=0 in (-T,T) x U, e EUcG.

Without loss of generality, by shrinking U and the interval (-T,T)

if needed, we may assume
(II1.1) u € c™(-7,7); v Nw)

(N ¢ 2, H-N(U) is the usual negative Sobolev space in U).

Let V be an open neighborhcod of e in which Lemmas 1 and 2

are valid. Take ¢ € C:(V), € £1 near e, and set
(II.2) tgu=h, Ph=r.
It follows from (II.1l) and (II.2) that we have
h € CM(-T, T H 3 (V) T € c-r,m B3 (),
furthermore

r(t,*) =0 near e.

197
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Let £, be defined by (I.7), since P (defined by (0.2))
commutes with the convolution with fv (convolution on G, t being
a parameter) we get from (II.2)

MM RITTARPY Snarserocons

(I1.3) P(fvah) = fv*r .

.

Inspection of the proofs of Lemmas 1 and 2 shows that

PG EE DR g
Seaaal T .

(I1.4) lim f£,*h = h in 2'((-T,T) x W),

and that fv*r extends as an element of

LA

SRR MGt

(-1, 1),% (00

and converges to 0 in this space (%(f) 1is the space of bounded
holomorphic functions in {0 ¢ cy.

Using a refinement of the Cauchy-Kovalevsky theorem, and
contracting W if needed, we may find ¢ > 0 (independent of h
and v) and a sequence

k, € C"((=¢,€),4(W)

(4(W) is the space of real analytic functions in W) converging to

zero in that space and satisfying

ka = fv*r in ({-€,e) x W

ngv e=0 = O §=0,...,m = 1.

u, = fvth - kv .

it follows from (II.3) and (II.5) that we have

(II.6) Pu =0 in (-e,e) x W.

On the other hand we have

u, € CMl(=e,€),d (W),




ANALYTIC APPROXIMATION

<3, = j ;
308, [e=g = £, *(3E0) |t=0 € 4(W), uniqueness for the Cauchy

eble=, in conjunction with (II.6), implies that u, is analytic in
Q.E.D.
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