ANALYTICITY OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS ON NILPOTENT LIE GROUPS

Linda Preiss Rothschild*
University of Wisconsin, Madison

1. Introduction. A differential operator

$$(1.1) P = \sum_{\alpha \in \mathbb{Z}} a_{\alpha}(x) D_{x}^{\alpha} D_{x}^{\alpha} = \left(\frac{1}{i} \frac{\partial}{\partial x_{1}}\right)^{\alpha} \left(\frac{1}{i} \frac{\partial}{\partial x_{2}}\right)^{\alpha} \dots \left(\frac{1}{i} \frac{\partial}{\partial x_{N}}\right)^{\alpha}$$

with $a_{\alpha}(x)$ real analytic is called <u>analytic hypoelliptic</u> in an open set U if Pu = f with f analytic in an open subset $V \subseteq U$ implies u must also be analytic in V. We survey here some conditions for analytic hypoellipticity when P is a left invariant differential operator on a nilpotent Lie group.

For constant coefficient differential operators, analytic hypoellipticity is equivalent to ellipticity (see e.g. [7]). Variable coefficient elliptic differential operators are always analytic hypoelliptic, but the converse is false. Here we will be concerned with nonelliptic variable coefficient operators.

- 2. Homogeneous operators. Now let G be a connected, simply connected nilpotent Lie group whose Lie algebra g is stratified i.e. $g = g_1 + g_2 + \dots + g_r$, vector space direct sum with $[g_i, g_j] \subseteq g_{i+j}$ if $i+j \le r$, $[g_i, g_j] = 0$ if i+j > r. We assume that g_1 generates g. Then g carries a natural family of dilations which are automorphisms: $\delta_t \mid g_i = t^i$. The dilations may be transferred to G via the exponential map, and also extend to the universal enveloping algebra $\mathfrak{U}(g)$. Thus we may write $\mathfrak{U}(g) = \sum_{j=1}^{\infty} \mathfrak{U}_j(g)$, where each element of \mathfrak{U}_j is homogeneous of degree j under δ_t .
- 3. Smoothness of solutions. The notion of C^{∞} hypoellipticity is defined as for analyticity, but with real analytic replaced by C^{∞} . For a homogeneous operator $L \in \mathfrak{U}(\mathfrak{g})$ necessary and sufficient conditions for C^{∞} hypoellipticity were established by Helffer and Nourrigat [6], who proved the following conjecture of Rockland [15]. Let \hat{G} be the set of irreducible unitary representations of G. For

 $\pi \in \hat{G}$ acting on $L^2(\mathbb{R}^k)$, we denote also by π the corresponding mapping of $\mathfrak{U}(g)$ into the space of differential operators on $L^2(\mathbb{R}^k)$. Then L is C^∞ hypoelliptic if and only if $\pi(L)$ is injective for all nontrivial $\pi \in \hat{G}$.

4. Nonanalytic hypoelliptic operators. The existence of C^{∞} hypoelliptic but not analytic hypoelliptic operators of second order on 2 step groups was suggested by the following example of Baouendi-Goulaouic [1]:

In Rⁿ⁺² the operator

(4.1)
$$P = \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}^{2}} + \frac{x_{j}^{2} \partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial x_{n+1}^{2}}$$

is not analytic hypoelliptic. (It is C^{∞} hypoelliptic by a general theorem of Hörmander [8]). P is not a left invariant operator on any group, but it is closely related to

(4.2)
$$L = \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} + \left(\frac{\partial}{\partial t_{j}} + x_{j} \frac{\partial}{\partial y}\right)^{2} + \frac{\partial^{2}}{\partial x_{n+1}^{2}}.$$

L is of the form

(4.3)
$$L = \sum_{j=1}^{n} (U_j^2 + V_j^2) + W^2,$$

which is in $\mathfrak{U}^2(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{h}_{2n+1}\oplus\mathbb{R}$, where \mathfrak{h}_{2n+1} is the 2n+1 dimensional Heisenberg algebra. Here $\{\mathfrak{U}_j,\mathfrak{V}_j,\mathfrak{W},\ j=1,2,\ldots,n\}$ is a basis of \mathfrak{g}_1 , and $\dim\mathfrak{g}_2=1$. Now it is easy to see that L cannot be analytic hypoelliptic if P is not. Indeed, if Pu vanishes in an open set in \mathbb{R}^{n+2} then Lu vanishes in an open set in \mathbb{R}^{2n+2} . If L were analytic hypoelliptic, then u would have to be analytic. Similar reasoning shows that if $\tilde{\mathfrak{g}}$ is any 2-step nilpotent Lie algebra having a quotient algebra of the form $\mathfrak{h}_{2n+1}\oplus\mathbb{R}$, then the operator L pulls back to $\tilde{L}\in\mathfrak{U}(\tilde{\mathfrak{g}})$, where \tilde{L} is C^{∞} but not analytic hypoelliptic.

5. <u>H-groups</u>. One is therefore led to consider 2-step algebras of which do not have quotients of the form $\mathfrak{h}_{2n+1} \oplus \mathbb{R}$. These may be characterized as follows. For $\mathfrak{h} \in \mathfrak{g}_2^* \setminus \{0\}$, let $\tilde{\mathfrak{g}}_n = \mathfrak{g}/I_n$, where $I_n = \{Y \in \mathfrak{g}_2 : \mathfrak{h}(Y) = 0\}$. Now let B_n

be the bilinear form on g₁ defined by

$$\mathbf{B}_{\mathbf{n}} \,:\, (\mathbf{X}_1,\mathbf{X}_2) \,\longmapsto\, \mathbf{n}([\mathbf{X}_1,\mathbf{X}_2]) \ .$$

If $[g_1,g_2]=g_2$, then det $B_\eta\neq 0$, all $\eta\in g_2^*-\{0\}$, if and only if none of the quotients \tilde{g}_η is the Lie algebra direct sum of a Heisenberg algebra with a Euclidean space. In this case the corresponding group G is called a \underline{H} -group.

6. Analytic regularity of \square . Further motivation for positive results on analytic hypoellipticity on H-groups came from the results on analytic hypoellipticity of the boundary Laplacian operator \square on strongly pseudo convex domains. C^{∞} regularity for \square had been established much earlier through the work of J. J. Kohn [11], but it was not until the mid '70's that analytic regularity was proved by Trèves [18] and Tartakoff [17]. Their methods were completely different. Tartakoff begins with the well known characterization of analyticity in terms of L^2 norms: a distribution u is analytic near a point x_0 if there is a neighborhood U of x_0 and a constant C > 0 such that

(6.1)
$$\| p_{x}^{\alpha u} \|_{L^{2}(U)} \leq c^{|\alpha|+1} |\alpha| !$$

for all multi-indices α . His proof is elementary in the sense that he uses only L^2 estimates with integration by parts.

Trèves methods are microlocal i.e. he works in conic sets in the cotangent space. It is well known that analyticity can be "microlocalized" [9]; a distribution u is analytic near a point $(x_0,\xi_0)\in T^*(U)\setminus 0$ if there is an open cone Γ in \mathbb{R}^m containing ξ_0 and a constant C>0 such that for every integer $N=0,1,\ldots$ one can find a function $\phi_N\in C_0^\infty(U)$, $\phi_N=1$ in V, a neighborhood of x_0 , $\varphi_N=0$ outside a fixed compact subset K of U such that

(6.2)
$$|(\varphi_N u)^*(\xi)| \le C^{N+1} N! (1+|\xi|)^{-N}$$

for all $\xi \in \Gamma$. It can be shown (see e.g. [19, Chapter V]) that u is analytic in a neighborhood of x_0 if and only if it is analytic at (x_0, ξ_0) all $\xi_0 \in \mathbb{R}^n \setminus \{0\}$. The complement in $T^*(U) \setminus 0$ of $\{(x_0, \xi_0) : u \text{ is analytic at } x_0, \xi_0\}$

G is not an H-group then there is no $L \in U_m(g)$ which is analytic hypoelliptic. Partial results on necessary conditions for analytic hypoellipticity have been obtained by Métivier [12] and Helffer [5].

(8.2) Theorem (Helffer [5]). If g is a 2-step Lie algebra and L $\in \mathfrak{U}_2(\mathfrak{g})$, then L is not analytic hypoelliptic if G is not an H-group.

9. Non-homogeneous operators. We restrict here to the case where G is a H-group. Our result, which is contained in a recent joint paper with Grigis [3], applies to operators $L \in \mathfrak{U}(\mathfrak{g})$ having the property that $\pi(L) \neq 0$ for all non-trivial one dimensional representations $\pi \in \hat{G}$. Such operators will be called <u>transversally</u> elliptic. Another way of describing these operators is by noting that they are elliptic polynomials in the elements of \mathfrak{g}_1 .

The elements of \hat{G} are parametrized by $\eta \in g_2^* \setminus \{0\}$. We now replace L by L^*L and study the family of differential operators $\pi_{\eta}(L)$ as η varies. Now we introduce spherical coordinates $\eta = (\rho, \omega)$ on $g_2^* - \{0\}$, and write $L = L_m + L_{m-1} + \ldots + L_0$, with $L_j \in U_j(g)$. Then π_{η} may be defined so that $\pi_{\eta}(L_j)$ is homogeneous in η i.e. $\pi_{\eta}(L_j) = |\eta|^{j/2} \pi_{(1,\omega)}(L_j)$ (see [13]). Then (9.1) $\pi_{\eta}(L) = |\eta|^{m/2} (\pi_{(1,\omega)}(L_m) + |\eta|^{-1/2} \pi_{(1,\omega)}(L_{m-1}) + \ldots + |\eta|^{-m/2} \pi_{(1,\omega)}(L_0)$.

Now let $\lambda = |\eta|^{-1/2}$ and define the operator $A(\lambda, \omega)$ by

(9.2)
$$A(\lambda,\omega) = |\eta|^{-m/2} \pi_{\eta}(L) .$$

One can prove that $(\lambda,\omega) \mapsto A(\lambda,\omega)$ is an analytic family of unbounded operators in the sense of Kato-Rellich [10]. Furthermore, the spectrum of each $\pi_{\eta}(L)$ is discrete and consists of eigenvalues. For ω_0 fixed, let K_{ω_0} be the multiplicity of 0 as an eigenvalue of $\pi_{(1,\omega_0)}$. Then analytic perturbation theory shows that for $|\lambda|$ small and ω close to ω_0 the product $d(\eta)$ of the K_{ω_0} smallest eigenvalues of $A(\lambda,\omega)$ is analytic and can be expanded K_{ω_0}

(9.3)
$$d(\eta) = \lambda^{\kappa_0} (a_0(\omega) + a_1(\omega_0) \lambda + a_2(\omega) \lambda^2 + ...).$$

In the language of pseudodifferential operators. d(n) is a semi-classical analytic

symbol on \mathbb{R}^2 which is elliptic near (y_0, η_0) if and only if $a_0(\omega_0) \neq 0$.

Our criterion for analytic hypoellipticity may be stated as follows.

(9.4) Theorem (Grigis-Rothschild [3]). Let G be n H-group, and L \in U(g) transversally elliptic. Then L is analytic hypoelliptic if and if for any $\eta \in g_2^*$ - {0}, the product d(η) of the small eigenvalues of η (L*L), given by (9.3), is an elliptic symbol i.e. $a_0(\omega_0) \neq 0$.

In the special case where G is a Heisenberg group, the theorem takes a simpler form.

Corollary. If G is a Heisenberg group, then L is analytic hypoelliptic if and only if $\ker L \cap L^2(G) = \phi$.

To see how the corollary follows from Theorem (8.4), we note that for the Heisenberg group $g_2^* - \{0\} = \mathbb{R} - \{0\}$ and hence $d(\eta)$ is elliptic if and only if it is not identically zero. On the other hand, if $d(\eta) \equiv 0$, then one can find a non-zero $f \in L^2(G)$ with $Lf \equiv 0$.

(9.5) Example. Let $g = g_1 + g_2$ be the 3-dimensional Heisenberg algebra with $\{x_1, x_2\}$ a basis of g_1 . Then for any $\alpha, \beta \in \mathbb{C}$ with $\beta \neq 0$, the operator

$$L = X_1^2 + X_2^2 + i\alpha[X_1, X_2] + \beta X_1$$

is analytic hypoelliptic. To prove this, one need only check that $\pi_{\eta}(L)$ has no zero eigenvalue for $|\eta|$ large.

The proof of Theorem (9.4) borrows heavily from techniques of Sjöstrand [16] and those of Métivier [14]. In [16] the question of C^{∞} hypoellipticity for a class of transversally elliptic operators more general than ours is reduced to that of determining the C^{∞} hypoellipticity of a pseudodifferential operator in fewer variables. In order to carry out this construction in the analytic category, we use the analytic pseudodifferential operators and approximate inverses constructed by Métivier [14].

References

- [1] M. S. Baouendi and C. Goulaouic, "Nonanalytic hypoellipticity for some degenerate elliptic operators," Bull. A.M.S. 78 (1972), 483-486.
- [2] L. Boutet de Monvel and P. Kree, "Pseudodifferential operators and Gevrey classes," Ann. Inst. Fourier, Grenoble 17 1 (1967), 295-323.
- [3] A. Grigis and L. P. Rothschild, "A criterion for analytic hypoellipticity of of a class of differential operators with polynomial coefficients," Ann. of Math. (to appear).
- [4] V. V. Grusin, "On a class of hypoelliptic operators," Mat. Sb. <u>83</u> (1970) 456-473 [Math. U.S.S.R. Sb. 12 (1972) 458-476].
- [5] B. Helffer, "Conditions nécessaires d'hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué," J. Diff. Eq. 44 (1982), 460-581.
- and J. Nourrigat, "Caracterisation des operateurs hypoelliptiques homogenes invariants a gauche sur un groupe nilpotent gradue," Comm. P.D.E. 4 (1979), 899-958.
- [7] L. Hörmander, Linear partial differential equations, Springer-Verlag, Heidelberg-New York (1969).
- [8] , "Hypoelliptic second order differential operators", Acta Math. 119 (1967), 147-171.
- [9] _____, "Uniqueness theorems and wave front sets," Comm. Pure Appl. Math., $\frac{24}{1971}$, 671-704.
- [10] T. Kato, "Perturbation theory of linear operators," 2nd edition, Springer-Verlag, Berlin-Heidelberg-New York (1980).
- [11] J. J. Kohn, "Boundaries of complex manifolds," Proc. Conf. on Complex Manifolds, Minneapolis (1964), 81-94.
- [12] G. Métivier, "Hypoellipticité analytique sur des groupes nilpotents de rang 2," Duke Math. J. 17 (1980).
- [13] , "Analytic hypoellipticity for operators with multiple character-istics," Comm. P.D.E. 6 (1) (1981), 1-90.
- [14] , "Une classe d'opérateurs non-hypoelliptiques analytiques," Seminaire Goulaouic-Schwartz, Ecole Polytechnique (1979).
- [15] C. Rockland, "Hypoellipticity on the Heisenberg group," Trans. A. M. S. $\underline{240}$ (1978) no. 517, 1-52.
- [16] J. Sjöstrand, "Parametrices for pseudodifferential operators with multiple characteristics," Ark. for Mat. 12 (1974), 85-130.
- [17] D. Tartakoff, "The analytic hypoellipticity of $\overline{0}$, and related operators on nondegenerate C-R manifolds," Acta Math. 145 (3-4) (1980), 177-203.
- [18] F. Trèves, "Analytic hypoellipticity of a class of pseudodifferential operators," Comm. P.D.E. 3 (1978), 475-642.

[19] , Introduction to pseudodifferential operators and Fourier integral operators, Vol. 1, The University Series in Mathematics, Plenum Press, New York, (1980).

ĺ