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0. Introduction

This paper consists of three parts:

Part I presents results on local embedding of CR structures. We consider an
abstract CR manifold whose structure is invariant under a transversal Lie group
action. We show that such a manifold can always be locally embedded in complex
space as a generic submanifold. The proof is based on selection of canonical
coordinates and repeated use of the Newlander-Nirenberg theorem [13]. When
the Lie group is abelian the embedding can be given a particularly simple form. Let
121 be the codimension of our submanifold (called M throughout the paper); it is
then convenient to denote by n+ I the dimension of the ambient complex space and
by zy,..., 2 Wy, .... W, the complex coordinates; we shall systematically write

2=(2).-n2y).  W=(Wi W)

One can then arrange that an equation of thc embedded submanifold M be given
by an equation
Imw=¢(z.2). (0.1)

Our viewpoint will be strictly local, about a central point of M which we take to be
the origin. Thus ¢ =0 at 0. It is also convenient to assume that the tangent space to
M at Ois the (real) vector subspace Imw =0, which means that d¢ =0at 0. We have
chosen to call rigid any CR structure that admits an embedding of the kind (0.1).
Let us underline the fact that the codimension f can be arbitrary.

Parts 11 & I11 are devoted to the study of local properties of CR functions or
distributions on a rigid CR manifold M. Our first step is to definc an adapted FBI
(Fourier-Bros-lagolnitzer) transform of such functions. Qur definition is a
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simplification of that in Baouendi-Chang-Treves [2] made possible by the fact that
we are not dealing with general hypo-analytic structures, only with CR ones.
Actually the definition extends to arbitrary embedded CR manifolds as will be
shown in a forthcoming paper. Here we restrict its use to rigid ones for which it is
particularly simple. In this respect the present paper is essentially self-contained.
Thus we prove, in the present context, that the exponential decay of the FBI
transform along certain conic subsets of the cotangent bundle is equivalent to the
microlocal hypo-analyticity of the CR distribution — the microlocal hypo-
analyticity being understood in the standard Sato sense.

By using the FBI transform we decompose any CR distribution as a finite sum
of CR distributions, each of which extends holomorphically to what we call a
wedge. If M is defined near 0 by Eq. (0.1), 2 wedge is a set of the kind

W={(z,w)e0O;Imw—¢(z,2)e T}, ©0.2)

where € is an open neighborhood of the origin in €**' and I' is an open cone in
R"*" with vertex at the origin. This can be viewed as an extension to rigid CR
manifolds of a result of Andreotti and Hill [1] about general (not necessarily rigid)
hypersurfaces (that any CR distribution is the sum of one that extends
holomorphically to one side and one that extends to the opposite side). In
codimension /=2 there have recently been results of Henkin [10] under certain
special hypotheses.

Part I1I presents sufficient conditions for microlocal hypo-analyticity and local
holomorphic extendability of CR distributions. In particular, if the sector property
(Def. I1L.1; cf. Baouendi-Treves [5]) is valid at a characteristic point, then any CR
distribution is hypo-analytic at that point (Th. IIL.1). An application of this fact is
that, when the rigid CR structure has finite type, then every CR distribution
extends holomorphically to a single wedge of the form (0.2) (Th. IIL.3). The latter
result is a generalization to rigid structures of arbitrary codimension of a result of
Baouendi-Treves [5] for hypersurfaces (not necessarily rigid). Finally Theorem
II1.4 shows how extendability results for a hypersurface in €2 can be used to yield
microlocal hypo-analyticity of CR distributions on rigid CR manifolds of any
codimension.

L. Integrability of abstract CR structures. Rigid and tube CR structures

In this section we prove that if a smooth manifold is equipped with an abstract CR
structure invariant under the action of a finite dimensional Lie group, then it is
locally realizable as an embedded CR manifold of a complex space. Special
attention will be given to the case where the Lie group is abelian.

We introduce first some notation. Since our results are local, we may assume
that the given manifold is an open set Q of R". Let CTQ be the complexified
tangent bundle to ©, and ¥~ be a subbundle of CTQ. For w € 2, we denote by ¥,
the fiber at w and assume that

dimg¥,=n, YweQ. (L1)
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Let
L=C*Q,%)

be the space of smooth sections of ¥~ defined in Q. We assume that ¥~ satisfies the
formal Frobenius integrability condition

v, v1]cy. (1.2)

This means that for every L, M €L, the vector field [L, M]=LM — ML is also
in L.

It is customary to say that Q is equipped with an abstract CR structure if, in
addition to (I.1) and (1.2) we also have

VA7, ={0}, VYoeQ. (1.3)

We say that ¥ (or IL)is locally integrable if for every w, € , there exist an open
neighborhood @', wee2'CQ, and Z,,...,Z,,, € C*(Q) (dimzgQ=N=2n+1)
satisfying in ',

LZ;=0, Vj=1,...n+l, ViLel, (L4)
and
dZ{w,), j=1,...,n+1are C linearly independent. (L.5)

A system of functions satisfying (1.4) and (1.5) will be called first integrals of L or
¥ . Possibly after shrinking €', the map Z: Q'»C"*! defined by Z=(Z,, ..., Z, )
is a difffomorphism from Q' onto Z(£2').

We shall introduce the notion of an abstract CR structure with a transversal
Lie group action. A vector subspace g of C*(£2, TQ) is said to be a finite
dimensional Lie subalgebra, if

[g.0]Ca,
and

dimgg, =dimgg, YweQ.

Definition L1, If @CIR?"*! has an abstract CR structure ¥~ (i.e. (I.1), (1.2) and (1.3)
hold), we shall say that ¥ is invariant under a transversal Lie group action if there is
a finite dimensional Lie subalgebra

gCC®(Q, TQ), (1.6)
such that
v, 07,®(e,C)=CT, 2, VYoeQ, (L7
and

[L,a]CL. (L8)
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Note that it follows from (I.1), (1.3), and (1.7) that
dimgg=1. (L9)

Definition IL.2. An abstract CR structure is called rigid if it is invariant under an
abelian group action, i.c. if the Lie algebra g of Def. 1.1 satisfies

[s.4]=0.

We have the following local integrability results.

Theorem IL1. Any abstract CR structure in Q invariant under a transversal Lie
group action is locally integrable.

In addition, if the CR structure is rigid (Def. 1.2), then around every w, € Q, there
exist coordinates x, y, s defined in a neighborhood Q' of w,. vanishing at wg, and first
integrals Z,, ..., Z, ., defined in Q' of the form

Zi=x;+iy;,  j=1,...,n,
Zy=Sgqtid_x.¥). k=n+l.....n+l,
where ¢;€ C*(R?"), j=1,...,1, is real valued.

It should be noted that rigid hypersurfaces (i.e. I=1) were considered in
Tanaka [15].
The following lemma is standard; it will be needed in the proof of Theorem L1i.

(1.10)

Lemma L1. Let g be a finite dimensional Lie algebra satisfying (1.6) and (1.7) and
Ty, ..., T, a basis of (the real vector space) g. Then for every wy € Q, one may find
local coordinates (s, u) around wq so that, in these coordinates,

! ¢
T,= s)=—. Jj=L...1,
j E; c§(s) 5,
with c{(s) analytic. If g is abelian, then the c% are constants.

Proof. Let U,,U,,...,U,, be a local real basis for (the C*(Q)-module) LI
around w,. Then define local coordinates around w, by

j=

(s, u)«—»exp(zlj s,-?}) exp( i: ukUk)-wo. (L.11)
j=1 k=1

If f=f(s,u) is a smooth function defined near w,, then in this coordinate
system one has for any Teqg,

1 n
Tf(s,u)= % f [(exptT) exp (j;l s j'I}) exp (kzgl u, U k) wo]

t=0

Since g is a Lie algebra, for any Teg,

H 1
exptTexp( > sj?}) =exp( > eft, s)’!}),
j=1 i=1
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by the Baker-Campbell-Hausdorff formula, where the functions e(t, s) are real
analytic. Now the lemma follows by differentiation. In addition, if g is abclian then

é
T= . 1gjsl. O
CSj

Proof of Theorem I.1. Let wo€Q and T,,..., T} a basis of g. It follows from

Lemma 1.1 and its proof, that using the coordinates (s, u) defined by (1.11) around
w,, every Le L can be uniquely written

L=M+T, (1.12)

with
M= as,u)— T= ‘ b»‘& u)7
Zl p( s )a ’ I_Z} J\o ) i

where a, and b; arc smooth functions defined in a neighborhood €’ of w,.
Denote by T the C*(2’)-modulc spanned by T,, ..., T,. Let M be the set of all
vector fields M in the decomposition (I1.12), when L varies in IL. 1t is clear that

McC«Q,CTQ),
is a C*(2)-module. We claim that M satisfies the Frobenius condition
[M,M]cM. (1.13)

Indeed it suffices to take L, Le L of the form (I1.12), L=M+ T, L=M'+T",and
to show that
[M,M]eM. (1.14)

For this note that
(L, L)=[M,M]+[TM]+[M. T]+[TTT].
Hence
M, M]=(L,L]-[TM]-[M,T)+X, (L.15)
where X e . We have

(TM1= £ (6T, M1=Eb[T, M1~ (15T, (116)

By assumption (1.8) above,
Tb(T, M= Sb[T, L1~ Sb[T, T1=L+X’ (L17)

with el and X'eT.
Since [M, T'] has the same form as [T, M"] we obtain from (I.15), (1.16), and
(I.17) that

M, M]=[L, L]+ +X"
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with £'¢ L, X" e T. Since [L, L] e L, we conclude that
[M,M]-X"elL

which proves our claim (1.14).
Note that the definition of M and (1.7) imply

MnM = {0}. (L.18)

Denote by M° the set of vector fields obtained by setting s=0in the coefficients
of the vector fields in M. Since those vector fields do not differentiate with respect
to s (only with respect to u), (1.13) and (1.18) imply

[M° M%IcM®, M°AM°={0}. (1.19)
Making use of (11.19) and the fact that
dimg M3 =2n,

we can apply the Newlander-Nirenberg theorem [13] in the u variables. We may
find coordinates

Zi=xtiy;=zuy, ... u3,),  j=1,..,n,

smooth in u, and a basis of the C*(U)-module M° (U is an open neighborhood of
the origin in R?") of the form

Therefore, possibly after shrinking Q' about w,, we can find a basis of the
C=*(2)-module M of the form

0 i é
= — P, 7 —_— J = .
M, 6z‘j+p§1d’(2’z’3)azp’ j=1,...n (1.20)
with
d2(z, 7,0)=0.

We regard (T}, ..., T)) as a basis for the left invariant vector fields on the Lie
group G associated to g. Let (S|, ..., S,) be a basis for the right invariant vector
fields. We may choose the §; so that in the coordinates (I.11) we have

..
;= ¥ &)a-, 15js! (1.21)
p=1 38,,

with ¢7(s) again real analytic.
Since the S; are right invariant and the T; are left invariant, we have

(5; L1=0 Vjk=1,..,1. (1.22)
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If M ;is given by (1.20), we may find a basis of (the C*(2")-module) IL of the form

!
Li=M,+ ¥ WE29S,, 1sjsn, (1.23)

where the h? are smooth functions in Q".
Since the coefficients of T; depend only on s, using (1.20), (1.22), and (1.23), we
conclude that, for g=1,. I j=1,.

n 1

[T.L]= X Tdz.z, s)i + ¥ Tz, z,9)S,. (1.24)

p=1 0z, #=1
Since [T, IL] ¢ IL (Condition (I.8)), the right hand side of (1.24) must vanish ie.

Td%=0, Th=0

which yields
d%(z,z,5)=d%(z,2,0)= 0,
Kz, 2,5)=H}(z,2,0).
Now putting #4(z, Z,0) =al(z, 2) we get, for j=1....,n,

d
L;= 6' + Z a¥(z,0)S,. (1.25)
and by (1.2),
[LpL]=0, j=k=1 ..n (1.26)
. 0
Let us first assume g is abelian. In that case S,=T,= é‘s_’ 'so that
. . ()
¢ ¢ 3 sl | 1.2
LJ—'E?_I'*"’EI aj(ha-’-)asps ( . 7)
and (1.26) reads,
Pl é

=7 4z 2)= —a"(- 2),

"I

forj,k=1,...n, p=1,...,L
Hence we may find smooth functions ¢(z.2), 1 £k £1, so that

Z, k=5 +igy(z.2).

is a solution of L,Z,,,=0, 15j<n, 1Sksl After making the change of
coordinates

ss=5—Img(x.y). 1=k=Zn,

we can assume the ¢, are real valued, which proves (L.4).
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To complete the proof of Theorem L1, we return to (1.25), (1.26) and drop the
assumption that g is abelian. Using (1.21) we get

) ] 6
Li=—+ eXz,2,5)—, 1Zj<n,
4 s:zl i )os =J=

i r (1.28)
with e?(z, Z, s) smooth and real analytic in s. '

The proof of Theorem I1.1 is completed by the following, which is a corollary of
the Newlander-Nirenberg theorem.

Proposition L.1. If (1.28) and (1.26), hold in an open neighborhood of the origin
QCR*™*!, then the C*(Q)-module 1L spanned by L., ..., L, is locally integrable.

Proof. We first complexify s and write

s=u+iv, wuvelR,

o _fe 0 @_1(_‘5_+ii

as,‘ - 2 3uk 50,‘ ’ 53',‘ - 2 auk 6U;‘ )
Since the coefficients in (1.28) can be holomorphically extended for s complex, we
may think of them as defined in an open set @ R2"*". In this open set we consider

a
the vector fields L,.....L,.,; defined by Li=L; (where é is the complex
14
differentiation), 1€jsn, L = %, 1kl
k

It follows from (1.26) and the holomorphy of €%(z, 2, s) with respect to s that

[L,L]=0, jk=1...,n+l.

On the other hand, itisclearthat L, ...,L,,,, L,, ..., L,, are lincarly independent
in Q. Therefore we can use again the Newlander-Nirenberg theorem and find
smooth functions with independent differentials, Z (2,2,5.5), j=1,....,n+1, so-

lutions of
LZ,=0. j=l,...,n+l,k=1,....,n+l,

but this implies that the Z, are holomorphic in s. Restricting the Z, to s real, gives
the desired set of first integrals of IL around w,. O

Let us introduce the following definition.

Definition L.3. Let ¥ be a rigid CR structure defined in Q (Def.1.2). A basis
L,,...,L, of (the C*(2)-module} IL is called canonical if

[L,L]=0, Vjk=1,...n, (1.29a)
[L;g]=0, j=1,..,n, (1.29b)
[L;L],e9,0C, VYweQ,jk=1,...,n. (1.29¢)

We have the following result:

Proposition 1.2. Assume that ¥ is a rigid CR structure defined in Q and let wq € Q.
Possibly after contracting Q about w,, in the coordinates of Theorem 111, the vector
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Jields,

q

L = (‘;_’——l Z ¢k E,(-u:) j=]‘---9u’ (1'30)
<]

where the ¢, are given by (1.10), form a canonical basis of IL.

In addition, if L,.....L, is another canonical basis defined in an open
neighborhood of we. then there exists a holomorphism H defined in a neighborhood
of 0 in €©" such that if

z=H(3)
then
~ é L. é
Lj:E"-j—ix; ¢,‘_§j(z'.:')$; (1.31)
with

$iZ. =g H(D). H?)).

Proof. In the course of proving Theorem .1 we have also shown the first part of the
proposition. It remains only to show the second part.

Let L,..... L, be the canonical basis defined by (1.30) and L,.....L, another
canonical basis defined near w,. We have

= Y a; (.58, j=l....n (1.32)
k=1
where the matrix (a;,,) is invertible
Since 6‘ 61 form a basis of (the real vector space) T and since
St

[L.8]=0. [L;a]1=0, j=1l.....n

we conclude from (1.32) that the a;, are independent of s.
On the other hand, using (1.32) we have for each (i, j).

[I:h Ej] = Eai.k(Lkdj.p)z'p_ E’aj.k(z‘kui.p)LP
+ E‘ai.kdj.k[l‘k' L]. (1.33)
Using (1.29¢) for the L; and the L; we conclude from (1.33) that
él a4z D) Lty 2. D) =0, (1.34)

for i, j, pe{l.....n}.
Since the matrix (a; ) is invertible we conclude from (1.34) that

Lig; (z.2)=0  Vk,j.pell....n}. (1.35)
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Thus, for each j, pe {1, ..., n}, the function g; , is anti-holomorphic (i.c. indepen-
dent of z). For j=1, ..., n, define

o —
Mj= k;] aj.k(z-)a.
Since [L}, Lk]=[ilp Zk]=0Q it fO]lows tha‘
[Mj,Mk]=0, j,k=1,...,n.

Since the coefficients of the M; are holomorphic, we may apply the classical
(complex) Frobenius theorem to find coordinates 2, and a holomorphism = = H(2),
such that

£ =M;, j=l,..n. (1.36)

02}'

(1.36) easily implies (1.31), which is the desired conclusion of Proposition 1.2. O

For our final result of this section we shall loosen the constraint in (1.7),
(Va®7,)0(g.,9C)={0},

in the case where g is abelian, allowing us to obtain an invariant description of
“tube” CR structures.
We have the following result

Theorem L2, Let ¥" be a CR structure defined in QCR*"*!. Assume (1.1) and
suppose there is an abelian algebra g satisfying (1.6),(1.8) and the following conditions

dimgg=I+k, 0ZkZn. (1.37)
(VD7) +(8,9C)=CT,Q2, VYweQ, (1.38)
Y. (g,C)={0}, VweQ. (1.39)

Then around every wq € 2, there exist coordinates x, y, s vanishing at w,, and first
integrals Z,, ..., Z, ., of the form
= iy, <j
Z; x,+xy,', 1<j=n (140)
Z,,+,,=s,,+t¢,,(x,y), 1=psl,

where the real valued smooth functions ¢, are independent of x,, X, ..., X;.

Note that if k=0 in (I.37) then the last summand in (1.38) is necessarily direct,
and (1.39) is automatically satisfied. We have a rigid CR structure and Theorem 1.2
is then a repetition of the second part of Theorem L1.

If k=n, then the functions ¢, in (1.40) depend only on y,,...,y, (and are
independent of x,, ..., x,,). Itis customary to say in this case that we have a tube CR
structure.

Proof of Theorem 1.2. Assume 0 <k=<n in (1.37). Under assumptions (1.1), (1.37),
and (1.38), and by elementary linear algebra, we can decompose

g=9®g',
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where g° and g' are two abelian Lic algebras satisfying
dimgg®=1, dimgg'=k,
and so that
Y, 07,00504C0)=CT,2, YoeQ.

We can now apply part 2 of Theorem L1, with g replaced by g°. Then we may
choose coordinates (x, y, s) and first integrals satisfying (1.10). We can choose a

basis of IL, L,, ..., L,, of the form (1.30), and a basis of ¢° of thc form §;= }%,
5;

1 <j<l. With these coordinates we may write a basis T;,.... T, of g' as
) n _ .0 ! _ 0
T,=%e (k; ai(z.z,5) b_-'-’:) + p; bi(z, Z, 5)5; . (1.41)

where the coefficients are smooth and the b7 are real. Since g is abelian, writing
[S.. T.] =0, implies that the functions «} and b? are independent of s. We claim that
the af are holomorphic in z i.e.

iajf=0, forall j,k,p. (1.42)

0z,
Indeed, since [g', L] C IL (condition (1.8)), (1.42) follows immediately from writing
that [T, L,] is a linear combination of L,,..., L, We writc al(z) instcad of
ai(z,z,s).
Now let

n ¢
= K(2)— <i<
M; k;aj(z)azk, 1£jgk,
so that rewriting (1.41), we have
1 _ ! 0 ,
T=s(M;+Mp)+ X b3(z,2)5—, 1=jsn. (1.43)
2 p=1 9.&‘,,

The commutation relations [T}, 7,] =0 imply
M ,M]J=0, 1£jksn. (1.44)

Weclaim that M, ..., M, are C-linearly independent in an open neighborhood
of w,. Indeed reasoning by contradiction, assume that, in each such neighborhood,
we can find w such that

I, uMlo=0, 1T TIi+0. (1.45)

Since the T}, and the S, , form a basis of g,,, we conclude from (1.43) that

T 4M ), € 3,0C\{0}. (1.46)
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It is clear that, by using the basis (1.30) of IL, we can find a lincar combination

! 0
; p(“’ (Jsp Y]
such that
YiM;+NeL.
J
In particular
YiM|,+N,e",.
J

On the other hand, it follows from (1.46) that the latter is a nonzero vector of
9,®C. This contradicts (1.39) and proves the linear independence of the M,.

The preceding result and (1.44) allow us to use the complex Frobenius theorem
There is a holomorphic change of variables z’ = H(z) so that

M=

a5 J=L.. k.
! 0z J

Then (with different coefficients) we have

!
7;.=__ R AC 1Sj<k. (147)
=3

By choosing a new basis L; of IL if necessary, we may still assume that

-

é ! ¢
imas =i Y (), 1ZjZn, 148
L] az-‘; 'kgl ¢k'-l( ')ask =Jj=n ( )

with ¢; real.
Now, for simplicity of notation we drop the primes. Since [g,IL]C I, making
use of (1.47) and (1.48) yields

! d
[Lj! 1;]= Z (bg.fl+i¢p.5,.xq)~_ =0
p=1 OSP

Hence
by, +idy x.5,=0,

forp=1,....,LL g=1,....k, j=1,...,n, which implies that the functions by +ig,, .,
are holomorphic.

We easily conclude from this, that there are holomorphic functions
F(z),...,2,), 1 Sp<l,and real functions ¢2(x, 4 1, ..., X ¥y ---» V) (independent of
Xy, ..., X;) such that

¢P(xv }’)=]me(-’-'|~ "'vzn)+¢2(xk+h '-"xmyl’ '"’yn)'
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Now putting
Z,=2Z;, 1Zjsn,
2y p=Zp.,~FAZ\....2,). 1Zpsl.
and
5,,=s,,—.%eF,,(z|.....z,,). 1<psl.

yields the desired result (1.40) with ¢, replaced by 45 and s, by 5, O

11. Microlocal hypo-analyticity and decomposition of CR distributions

In this section we restrict ourselves to rigid CR structures. Let U be an open
neighborhood of 0 in R?" and V an open neighborhood of 0 in R’ Let
(x.y) € Urrg(x. y) € R! be a smooth real vector valued function defined in U. (we
also write ¢(z. 2), z=x+iy). We shall assume

#0)=0. ¢10)=0. (IL1)

We denote by (z, w) the complex variable in €"*'(z = x + iy, w=5+it), and by
M the submanifold of €"*' defined by

Imw=¢(x,y), (x,y)eU, HAewelV. (11.2)

The map Z:(x. y. s)—(z.s +ig(z. 5)) is a diffeomorphism from Q= U x V onto
M. Note that M is a generic CR manifold of (real) codimension /.

A distribution /i defined on the manifold M is called a CR distribution if it is
annihilated by the induced Cauchy operator on M. This is cquivalent to say that ts
pullback to Q. h=h- Z. satisfies the equations

Lh=0, 1s5j=n, (IL3)
with
_f Lk, @
Ly g 12, 0 e

We shall often identify 4 and its pullback k. Since we are interested here only in
local results, we shall deal with germs of CR distributions at w, € 2{or Z(wg) € M).
The central point w, will be often taken to be the origin.

Definition I1.1. Let i be a CR distribution defined in an open neighborhood of
wo € Q. We say that h extends holomorphically at wq (or at Z(w,)) if there exists a
holomorphic function H(z. w) defined in an open neighborhood of Z(w,) in C***
such that

h(x,y.s)=H(z.s+i¢(z.Z))

in some neighborhood of w, in 2.
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Very often it suffices to consider only CR functions (say C') instead of
distributions. Indeed we have the following proposition which is a variant of a
result in [3].

Proposition IL.1. Let h be a CR distribution defined in Q. There exist re Z,, and a
CR function fe C\(2), 0€ Q' CQ. such that

h=4f in @,

with

i 9?2
4,= — .
: ~§1 s}

Proof. First observe that the I-dimensional manifolds in @, {x=x,, y= Yo}, arc
non-characteristic with respect to the vector fields L, 1 £j<n, defined by (114).
Trading off regularity with respect to s with regularity with respect to (x, y), it is
standard to see that (after shrinking  if needed) we have

heC*(U.2'(V)).
After further shrinking of Q it is then also standard to write
h=A4u, (11.5)
with ue C*(U, C\(V)).
Since the vector fields L;'s commute with 4,, we get from (11.3) and (IL5),
AYLuw)=0. (IL.6)
Set

gi(x,y.5)=(Lu)(x, y.5).

It follows from the analytic hypoellipticity of the Laplacian and Eq. (11.6) that
the functions g;, | £ j<n, are analytic with respect to s (uniformly with respect to

(x, ).

For 1 £j<n, define
Hifx, y,w)=g/(x, y. w—ig(x.y)).
It is easy to see that
H;eC\U", #(V))

where U’CU is an open neighborhood of 0in R*", 7 an open neighborhood of 0 in
€', and s#(V) is the space of holomorphic functions in V.
Note that we have

g,-(x, Ys S) = Hj(x’ Y, W)lw=s +io(x, y) (117)

0
Ligfx,y,5)= (G?k H{x,y, W)>

w=s+id(x,y)
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Since L,g, =L,g;. 1<j, k<n, we conclude that we have

oH; @H,
A o (IL8)
Also (I1.6) and (IL.7) imply
AH;=0, 15j<r. (I1.9)

Itis quite standard to see that, using (I1.8) and (11.9), and after further shrinking
of U’ and ¥, we can find H e C'(U’, #(V)) satisfying

oH

—=H. <js WH=0.
3, j» 12jsn, AH=0

The reader can now easily check that we reach the desired conclusion if we set

f(x, y,9)=u(x,y,s)— H(x, y,s+ig(x,y)). O

For CR distributions we shall need the notion of microlocal hypo-analyticity
as introduced, in a more general set up, in Baouendi-Chang-Treves [2]. In fact we
shall give here a simpler definition (valid for rigid CR structures). The reader can
check that it coincides with the one in [2]. However this fact is not used in this
paper.

For distributions in C°(U.&'(V)), we need to introduce the concept of
microlocal analyticity at (so, %) € T*V\0, uniformly with respect to (x, y) near 0 in
U. Let ue C%(U, 8'(V)); following Bros-lagolnitzer [8] (see Sjostrand [14]) we
introduce its FBI transform defined by

I(z. w,0) = [ &® 99 1ol =344y 5 gYu(x, y, 5)dS (I1.10)

!
where z=x+iy, weC', ce R and 4(s,0)= (l+f P s,a,lal").
j=1

We shall say that u is analytic at (so, a°) € T*V\O uniformly in (x. y) near 0 in
IR2" if the following inequality holds with C>0,

|(z, w, 0)| € Ce~lelC (1L.11)

for (x, y) in an open neighborhood of 0 in U, w in a complex neighborhood of s, in
C' and o in an open cone I'CR', 6%€T.

A similar definition can be given for he Co(U,2'(V)) by replacing u by
1(DHh(x, y,3) in (I1.10), with xe CF(V), x=1 near s,.

It is easy to check (see Sjdstrand [14] for example) that the previous definition
is equivalent to the existence of open convex cones I;CR', 1<j<r, open
neighborhoods of 0 and s, respectively, U'CU, V’CV, and functions

L€COU KV +il))NO)

(@ is an open neighborhood of s, in €C'), with tempered growth uniformly in (x, y)
(ie. 1f(x, y,s+i)| £ Ct V) satislying

r
h= Y bf; near (x.y)=0.5=s,, (11.12)
i=1
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and
I-6°<0,

where bf; is the boundary value of f; at 1=0.
For CR distributions we shall need the following definition.

Definition IL.2. Let h be a CR distribution defined in Q=U x V. We say that his
hypo-analytic at (s, °) € T*V\{0} if h is analytic at (s,. 6°) uniformly in (x, y) near
0in R%,

We first prove the following (local) equivalence.

Proposition I1.2. A CR distribution h defined in Q extends holomorphically at (0. s,).
So€V, (see Del 1L.1) if and only if h is hypo-analytic at (s.6°) for every
0% e R\{0}.

Proof. It is clear that if h extends holomorphically at (0, s,) then it is analytic with
respect to s, uniformly in (x, y). It is therefore hypo-analytic at (so, 6°) for every
a® e RA{0}.

Conversely assume that h is hypo-analytic at (s,, ¢°) for every ¢° € RA\{0}. This
implies that / is analytic in s uniformly in (x, y). For (x. y) near 0in IR?” and w near
5o in €' define

H(x.y,w)=h(x, y,w—ig(x,y)).
We have
He CO(U, (7))
with 0e U'C U, sye VT, and
h(x, y,s)=H(x, y, s+i¢(x, y)).

Since h satisfies (I1.3) we also have

-

ﬂ(x,y,w) =0, IZjsa. (1L13)
0zZ;

w=8+id(x,y)
It is easy to sec that the holomorphy of H with respect to w together with (IL13)
imply

g—g(x, y,w)=0.

This shows that H is the desired holomorphic extension of k. [

Next we will give a microlocal version of Proposition I1.2 where local
holomorphic extendability is replaced by extendability to certain open sets in
C"*!, called wedges, whose boundaries contain the manifold M defined by (I11.2).

More precisely, if I is an open convex cone of R and @ an open neighborhood
of the origin in €"**, a wedge of C*** is an open set of the form

W=w(OIN={zweCl;Imv—¢(z,D)eTl}. (I1.14)
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Clearly M@ is contained in the boundary of #". We say that Mn( is the edge of
w(o,r).

If H is a holomorphic function in %~ we say that it has slow growth at M if there
exist C and N such that

|H(z, w)| £ C[dist((z, w), M)]"¥, VY(z,w)e¥ . (11.15)

If H is such a function the reader can check that it has a boundary value on M,
h=b,H, which is a CR distribution on M. (See similar proof in [2].) We say
that the CR distribution h extends holomorphically to the wedge W'

If his a CR distribution defined in @ = U x V let I(z, w, 6) be the FBI transform
of xh (x€ CE(V), x=1 near 0) defined by (IL.10) with u=yh. It is convenient to
introduce a slightly modified transform. Set

F(z,w,6)=1{(z,w—ig(x, y), ). (IL.16)

Note that (I1.10) and (I1.16) are well defined for CR distributions (u=h; sce
proof of Proposition IL.1). However the reader can casily check that, making use of
Proposition IL1, it suffices to consider only CR functions of class C !in the rest of
this section.

We are now rcady to state a microlocal version of Proposition I1.2.

Theorem IL.1. Let hbe a CR distribution defined in Q= U x V and 6° a unit vector of
R'. The following conditions are equivalent:

(i) h is hypo-analytic at (0,6°) (see Def. 11.2).

(ii) If F is defined by (11.16) then there exists C>0 such that

|F(z, w,a)| < Ce 1oV (11.17)
uniformly for (x, y) near 0 in R*", w near 0 in @' and o in a conic neighborhood of 6°
in R%,

(iii) There exist open convex cones I;C R, 1 £j<r, anopen neighborhood € of 0

in €+, and CR distributions h; on M@ extending holomorphically to the wedge
W(0,T) (see (1L.14)) such that

h= Sk, (IL18)

and
F,-a°<0, 1jsr. (1I1.19)

The modified FBI transform F(z, w, 6) of u= yh (where his a CR distribution) is
holomorphic with respect to w, but not with respect to z. The following lemma and
its proof will be used several times in the rest of this paper to overcome this
difficulty.

Lemma IL1. There exist open sets U’ and 7, 0e U'CR™, 0e VcC', and a

holomorphic function G(z,w, o) defined in the domain

|#ea|
2 Al

zelU’, weV, ae€', |Imol< (11.20)
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such that
|F(z, w,0)—G(z,w, )| < Ce ™ l?l€ (11.21)
uniformly for (z,w,a) in the domain (11.20).

Proof of Lemma 11.1. Using (11.3) and (I1.4), and integrating by parts we have for
l=jsn,

oF i(w % - id(x. 51 — Lo (w5 — i
E(z' w,0)=— ‘J'el(w $-igtx. o ~ ol (w =3 - id(x, y)?
§

{
 Aw—5—ig(x, ), 0) T —fﬁ* (x,y)
K51 0%

=1

dy -
', (Hh(x, y,5)ds.

Since y(3)=1 for § in a neighborhood of the origin in R’, we conclude that ST{? is
exponentially decaying as |o|—00 (i.e. satisfying an inequality similar to (Il.lj7))
uniformly in (x,y) in an open neighborhood of 0 in R?", w in an open
neighborhood of 0 in €', and ¢ e !, |Im | <4|%ea]).

We can make use of a standard inverse of the differential operator d, in a small
enough neighborhood of 0 in R?", and solve the equation

0:0(z, w,0)=3,F(z,w, 0) (11.22)

in such a way that Q is smooth in (x, y, w, g), holomorphic with respect to (w, 6),
and moreover such that Q satisfies (with C>0):

1Q(z, w, 6)| S Ce ™ol (11.23)

for (z, w, ) in a domain of the form (I1.20).
It follows from (I1.22) and (11.23) that we reach the conclusion of the lemma by
taking
G(z,w,0)=F(z,w,0)-Q(z,w,0). O

Proof of Theorem 11.1. The equivalence of (i) and (ii) follows immediately from
Definition I1.2 (i.e. (11.11)) and (11.16).
It is easy to see that (iii) implies (i). Indeed if (iii) holds then

h= 'Z bMHj
ji=1

with H;e #(#(0, I)), having slow growth at M, and I;- 6° <0. This implies in
particular that h is analytic at (0,¢° uniformly in (x, y) (Sato’s definition, see
(I1.12)); therefore (i) holds.

It only remains to prove that (i) implies (jii).

Let h be our CR distribution (or function) defined in Q. We set

u(x, y,5)=x(s)h(x, y, s) (I1.24)
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with y € C2(V), = near 0. Recall that we have the following inversion formula

u(x, y,s)= (21[), ) I e Do -lols =9 g5 § g)u(x, y, 5)d5da (11.25)

GR

where 4 is defined as in (I1.10), and the integral (11.25) is defined by introducing a
convergent factor e " and passing to the limit as -0 (see Sjostrand [14] or
Baouendi-Chang-Treves [2] for example).

Note that (I1.25) can also be writtcn

u(x, y,s)= Y o f I(z s, 6)do

(2

— { F(z.s+i¢(x,y), o)do (IL.26)
(2 n) sem!

where I and F are defined by (11.10) and (11.16).
Let I, 0<j=r, be closed strictly convex cones in R’ such that

C~

R'= ) 1.

J

measure ([;N1)=0 (IL.27)

[

j=0

for j+ k. Assume that I is a neighborhood of ¢° and that (IL.11) holds for s € I,
Also a®¢ljfor |Sj<r.
For j=0, ..., r define

(2 G oS, Flaus+iglx.y).o)do. (11.28)

If I" is a closed strictly convex cone C R denote by Iits polar (or dual cone),

F={veR';v-6>0VaoeNO}.

uj(x’ Y. S)

It is an open convex cone.

If% and €’ are two open cones we write € C C€"if €nS' ! is relatively compact
in 'ns' "t

Forj= 1, ...t let €; be an open convex cone of R’ satisfying:

¢,ccl;, %;-6°<0.

Note that for ce[; and ve 6, we have

v-ozavllo], with 2>0. (11.29)
For j=0,...,r, define
I
Kj(x,y,w)= ay aé[r, F(z,w,0)do . (11.30)

It follows from (IL.11) (or (I1.17)) tha} there exist an open neighborhood U’ of 0
in R?" and an open neighborhood V of 0 in €' such that

KoeCOU", # (V). (1L.31)
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For j=1,....r the reader can easily check that (11.29) implies that K Ax yow) is
contmuous in the wedge # (U’ x V. €) (itis even C*), holomorphic with respect to
w, and with slow growth at M. In addmon we have

u;=hyK;, near the origin, (11.32)

where u; is defined by (I1.28). It should be emphasized that K ; is holomorphic in w
but not m z. We shall overcome this difficulty by modlfymg K;

Asin the proof of Lemma I1.1, an integration by parts shows thal (possibly after
shrinking U’ and 7), we have for j=0, ....r,

&K (x. y. w)e COU", #(7)).

(K; is defined only in the wedge # (U’ x V'(,) whereas d,K; extends to U’ x V.
holomorphlcally in w). .
After further shrinking of U’ and V we can solve the differential equations

C:Ri(x, y,w)=0:K (x, y, w) (11.33)
with
R;e CoU", #(V)),

(of course we can take Ry =K,).
For j=0,1,...,r define

Hj=K;=Rj+ — zR (11.34)

It is clear that H; is continuous in the wedge ¥ (U’'x V,%¢ ;) holomorphic with
respect to w, with tempcred growth at M (Hye CO(U’, 3{ (7))). The desired
decomposition (I1.18) is then an immediate consequence of the following

Lemma IL2. If H, is defined by (11.34) then
(@) H;is holomorphu in WU xV, €)).

(b) u= _Z byHj, near 0.
Proof of Lemma 11.2. (a) We have only to prove that H; is holomorphic with

respect to z. Let Z*(L,), 1 £k < n, be the push forward of the vector field L, fromQ
into €**" We have

Z‘(L,‘)———Zl Z _fp(;.,z'),,_ .

0%, 0

Since K; is holomorphic with respect to w, using (II.30) we have, 1 £k<n,
0<j=sr,
I3}
Lkuj= b." = K
¢z,

j*

By (11.33) we also have

-

(7
Lku_,- - = R .
azk w=s+idlx.))
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Since er u;=u and L,u=0in a neighborhood of 0, we conclude that for 1 £k <n,

j=o
rod
2 =R =0,
Jj=0 U less+igixo
and therefore it is casy to sec that
roa
—= R;=0. (11.35)
ji=0 (?Zk

(11.33), (11.34), and (11.35) imply at once, after further shrinking of U and 4
0.H;=0 in w(U xV.%)

(8:Ho=0in U’ x 7).
(b) Claim (b) is an immediate consequence of (11.32) and (11.34).
This completes the proof of Lemma 1.2 and hence of Theorem IL1. U

If h is a CR distribution defincd in Q= U x V, its hypo-analytic wave front set
(denoted WF,h) consists of the points (s,6)e T*V\0 such that 4 is not hypo-
analytic at (s, o) (Def. 11.2). WF, h is a closed conic subset of 7*\0. Its canonical
projection on V consists of the points se V¥ such that h docs not extend
holomorphically at (0, s);(see Prop. 11.2). If soe V we shall usc the following

notation
WF,,  h={o¢€ R\{03; (50, 0) € WF,h}.

For holomorphic extendability to a single wedge, we have the following result.

Theorem IL.2. Let I” be a strictly convex closed cone contained in R', and h a CR
distribution defined in Q. The following properties are equivalent.

(a) Wf,ohCrT.

(b) For every open cone € CIR!, with € C CI', there exists an open neighborhood
G of the origin in €"*' such that h extends holomorphically to the wedge W (0, ).

Proof of (b)=>(a). Let 6°€ R"\{0}, 6°¢ . Let € be an open convex cone of R’
satisfying
¢®-€<0 and FCcCl.
Property (b) implics that i extends holomorphically to a wedge #7(¢, 6). Theorem
IL1 ((iii))=(i)) implies that
6°¢ WF,, oh,

which proves (a). O

Proof of (a)=(b). Assume (a) and let % be an open cone, € C C I'. Let I’ be astrictly
convex closed cone satisfying

rciner,, <cclr”. (11.36)

The proof follows quite closely the part of the proof of Theorem I11.1 showing
that (i) implies (iii).
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Set I;=R\I" and I, =I", and with u= yh, define u;and K, j=0, 1, by (11.29)
and (I1.30). By assumption (a) and (I1.36) we see that (I11.17) holds for cely;
therefore we have (11.31).

Using (I1.36) we can take %, =% and (11.32) holds for j=1.

The rest of the proof is identical to the one in Theorem IL.1: For j=0. 1 define
H; by (I1.34). We finally get

u=Holy=s+ipe 5+ byH,

where Ho(z, w) is holomorphic near 0 in €"*!, and H, holomorphic in a wedge
(. %) It suffices to write
u=b3‘(Ho+H|)

in order to complete the proof of Theorem 11.2. O

The following decomposition theorem is reminiscent of a similar decompo-
sition result for distributions in real space, and of the edge of the wedge theorem (cf.
Hoérmander (1))

Theorem IL3. Let I,....T, be strictly convex closed cones contained in R! and
satisfying:

R'= U ;. meas(;nR)=0,j+k.
i1

If his a CR distribution defined in Q there exists an open neighborhood of 0, Q'C Q,
such that

h= 3 h in Q. (11.37)
i=1
where h; is a CR distribution in Q' satisfying
WF . oy CLA(WE, oh). (IL38)

In addition if h=3 hjis another decomposition satisfying (11.37) and (11.38), then
hi=h;+ ¥ hy. (IL.39)
k=1

where hy, is a CR distribution satisfving
WF,a0hi CONLAWF,, oh. (11.40)
lmd hﬂ; =— hkj'

Proof. The proof of this theorem also follows closely the part of the proof of
Theorem IL1 showing that (i} = (iii)
With u=yh define u;and K. for j=1. ....r. by (11.28) and (11.30). Then we have

and (IL.32) holds for j=1.....r.
If we define H; by (11.34) we obtain the decomposition (I1.37) with

hj=bﬁlHj- léjér.
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It is clear that #; is independent of the choice of the open cone ¢ satisfying
€;cclj,

and that for cach such choice there exists an open neighborhood @ of 0in €"*' such
that h; extends holomorphically to #7(¢,6,). By Theorem 11.2 we conclude that

WF . ohiC T} (I1.41)

In order to complcle the proof of (11.37), takmg (I1.41) into account, we must
show that if 6%€ T} MO} and d®¢ WF . oh, then 6®¢ WF,, oh;.
By Theorem IL.1 given such a ¢® we can write

by, (11.42)

M ~

k

1]

where £, is a CR distribution and WF,, ok, C I}, I, being a strictly convex closed
cone, a®¢ I;.

Since for each j=, ..., r the map hi—h; is linear in k, in view of (I1.42) we may
assume that his one of thc hk For the sake of simplicity of notation we shall assume
that

WF,,ohCl

where I is a strictly convex closed cone, 6® ¢ I'. Let I”” be a strictly convex closed
conic neighborhood of I', 6®¢ ™, and €’ an open cone satisfying

;ccrcl;, ¢°-%;<0.

Since (11.17) holds for 6 € R\I™", we conclude that K ;extends holomorphically in w,
for we €. This in turn implies that H; extends holomorphlca]ly to a wedge of the
form ¥ ((5 ¢)). The hypo-analyticity of h; at (0, 6°) follows at once. [Note that if
r'nr=90 lhen h; extends holomorphlcaliy at 0].

To prove ([I 39) and (11.40), let hj=h;—hj. Then 3 h7=0. Hence we may
assume the h; satisfy (I1.38) and

,-:i, h;=0, (11.43)
and find CR distributions h, satisfying
hy= él hao = —hg, (11.44)
with
WF .ol CALAWE,, oh. (11.45)

The desired conclusion (11.39) and (11.40) would follow at once.
Let Fi(z, w, o) be the modified FBI transform of u = xh; defined by (11. 16) Asin
the proof of Lemma ILI, we may find @z, w.q) satnsfymg(ll 23),j=1,....r. with

6.0z, w.a)=CF(z.w,0). (11.46)
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Now, with w=s+id(x, y), let

hy= {'j [Ffz,w,0)~Q(z,w,0)]do + ; [ Qfz,w, a)do}
x R

1
- {’I [Fk(zo w,0)— Qk(zy w, G’)]dﬂ' + ; Ejt.‘ Qk(z' w, O‘)dﬂ}
4
=hj'(l_h}.k2 . (1]'47)
Then for j fixed

Yhy= { § [Flz.w.0)—Qfz.,w,0))do+ | Qfz,w, a)da}
k R! Rr!

- {I Z [Fl‘(z’ w, 0)— Qk(zv w, (J')]d(f + "!_' j Z Qk(zs W, O')da} . (]l'48)

I'j k R! k
We claim first that the second term on the right hand side in (11.48) is zero. Indeed,
Z Fy(z,w,6)=0 since Y i, =0. By construction, this implies Z Q,=0, which

provcs the claim. Since the first term on the right hand side in (1. 48) cquals h;, this
proves (11.44). The same reasoning used in the proof of (11.38) shows that we havc

WF . ohj C N WFy, oh;
and
WF . ohju2 COLAWE,, ohy
which, together with (11.38), proves (11.45). O

A minor change in the previous proof left to the reader yields the following
result.

Theorem 11.4. Let h be a CR distribution defined in Q, and T, ..., T, be strictly
convex closed cones contained in R' and satisfying:

WF,,“_OhC!m.(U l])
i=1
meas(inf)=0 for j+k.

Then there exists an open neighborhood of 0, Q' C R, and CR distributions in §',
h;, satisfving

h= 3 by,  WFy, obyCTnWFy, oh.
Moreover. if 6; is a nonempty open cone satisfying
¢, cCl;, 1<jsr,

then there exists an open neighborhood € of the origin in €' such that h; extends
holomorphically to the wedge % (€. 6)).



CR structures with group action and extendability of CR functions 383

Remark 11.1. If =1, the CR manifold M is a hypersurface of €"*'. A wedge
determines one side of M. The decomposition theorem states that any CR
distribution is the sum of two CR distributions, each extending holomorphically to
one side of M. This result (without the rigidity condition) can be found in
Andreotti-Hill [1]. In addition, if a CR distribution is hypo-analytic at (0,0°),
¢° e R\0, then it has a holomorphic extension to one side of M. This result also
holds without the rigidity condition (see Baouendi-Treves [5]).

We belicve that the decomposition results stated here are new when [> 1. For
example when /=2 (i.e. codimension M =2) we obtain that any CR distribution is
locally the sum of three CR distributions, each extending holomorphically to a
wedge. (See Henkin [10] where non rigid manifolds are considered but some extra
conditions on the Levi form are imposed.) In addition if a CR distribution is hypo-
analytic at (0, ¢°), ® € R\{0}, then it is the sum of two CR distributions extending
holomorphically to wedges.

111. Criteria for microlocal hypo-analyticity in rigid CR structures of finite type

In this section Theorem II.1 is used to give sufficient conditions for microlocal
hypo-analyticity of CR distributions. Theorem I1.2 is then applied to show that, in
the finite type case, any CR distribution extends holomorphically to a single
wedge. We follow here the notation of Sect. II.

If f is a real vector valued smooth function (or a formal power serics) defined in
a neighborhood of the origin in IR?", then the power serics of f has a unique
decomposition of the form

12D~ fiol2, D+ finf(2, 2) (I1L.1)
with

Sz, D)= 3 Rela,2*), (pure terms)
|

2|20

a, and a,, are complex vectors satisfying

Sf2.2)= El a, pz*#, (nonpure terms),
2|2
NES

az.ﬂ‘ = dﬂ.z .
We shall need the following definition:

Definition 111.1. We say that a vector ¢° € R\{0} satisfies the sector property if
there exists a holomorphic curve {—7({) € C" defined in a neighborhood of 0 in €,
+(0)=0, such that

60 . ¢(n)(?(‘:)0 m) = Pm((s C) + O(|C|m+ ! ) > (111-2)

where §,,, is the series of nonpure terms of ¢ defined in (I1L1), P,, is a real valued
homogeneous polynomial of degree me Z ,, and moreover such that there exists a
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sector . in the planc and a complex number pe @ satisfying
PG, O+ Aelul™)., <0, (111.3)

i

m’

angle ¥’ > (111.4)

We can now state a criterion for microlocal hypo-analyticity.

Theorem IIL1. Assume that ¢° € R\{0} satisfies the sector propert y of Definition
IIL1. Then any CR distribution in Q is hypo-analytic at (0, ¢°).

The following lemma will be needed in the proof of Theorem IIL1. It is related
to, and replaces, the argument given in [5], Sect. I11. One of the ideas used in the
present proof was suggested to us in a referec report for that paper.

Lemma IILL. Let P(x,y) be a real valued C' function homogeneous of degree m,
(meR, m21) defined in R3\{0}. Assume there exists a sector & in the plane such
that

n
Ply>0 and angle!/’>'z.

Then there exist a bounded domain D, 0€ DCIR?, and a holomorphic Junction [
defined in D, continuous on D, satisfying

(P+%e ):p>0, f(0)=0,
where 0D is the boundary of D.

Proof. We shall write P(z) instead of P(x, y). Aflter a rotation we may assume that
P(2)>0 for |argz|< % 240 (I1L5)

for some m’, 0<m’<m.
Let 2.>0 be small enough so that

P(z)—iHez™ >0 for |z]=1, |argz|g21m,. (11L6)

Here we take the principal determination of z™". Since #ez™ = |z|™ cosm’0 vanishes

for |argz|= %, we conclude from (I11.5) and thc homogeneity of P that

P(z)— /. PRez™ 2oz, for largzl=%, (2>0). (1.7

For ¢>0 let D, be the domain defined by

|arg(z+c)]<%, O<lz+¢l<]1.
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(By (111.6) and (1I1.7) we have
P(z+¢c)—iRe(z+e)™ +ie™ >0 for zedD,.
We must show that if £>0 is small enough then
P(z)— idte(z4e)" + 2™ >0 for zedD,. (H11.8)

Therefore we need to estimate the difference P(z +¢)— P(z). We have
LapP
P(z+¢)— P(z)=¢] (.,— (z+te)dt .
00X

thus
|P(z+¢)— PC) S Me(lz+¢™ ' +e™ '), (111.9)
with M independent of &.

It follows from (I11.6) that on the arclz +&|=1, larg(z+ )| £ 2% we have

P(z+c)—idte(z+e)" 2C, . (I11.10)

with C, >0 independent of &. If £> 0 is sufficiently small (111.9) and (I11.10) imply
that we have, for z on the same are,

P(z)—iRe(z+e)™ 2 C,/2.

In order to show the desired positivity (I11.8) on the segments jarg(z + &)} = 2—:‘”7,

|z+¢|< 1, we avail ourselves of (I111.7) and (II1.9). By (I11.9) we have
|P(z4+£)— P)| Satlz + ™ + M'e™,
where M’> 0 is independent of &. Therefore we conclude by using (I11.7) that, for
T

larg(z + ¢)] = =—, we have
2m

P(z)— i Re(z +e)™ +ie™ Z 6™ —M'c™.

The right hand side of the latter is >0, if ¢>0 is sufficiently small. 3

Proof of Theorem I11.1.

Part 1. In this part we prove that if Theorem III.1 holds when the holomorphic
curve 7 in Definition L1 is given by ¥({)=((,0, ...,0), then it also holds for an
arbitrary y (satisfying (111.2)-(I11.4)). Indeed let 7,((), ..., 7,({) be the components of
the vector 7({). We may assume

71(0)#0. (IL11)
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Consider the map z=0(3) defined in a neighborhood of 0 in C” by

21 =0,(0)=(2)),
z,-=()j(2')-l_-z”j-:-yj(z°l): 12§j_g_,,. (1L.12)
Setting Z=3%+ij, we have
x=x(%, j)=Re (X +iy),
y=yZ 7)=Imo(% +i7).

Using the chain rule the reader can easily check that the pull back of h defined
by -
h(x, 5, 5)= h(x(Z, 7). (%, ), 5),

is a CR distribution on the submanifold M of C"*! defined by
Imw=4(z, 5)=§(0(2), D).

In the new rigid CR structure (defined by § instead of @), the vector ¢ satisfies
the sector property of Definition III.1 with a new curve 7 defined by ()
=((,0, ...,0). Assuming the theorem holds in this case, we conclude that 4 is hypo-
analytic at (0, 6°).

Let F(z,w, o) be the modified FBI transform of u= zh given by (11.16), and
F(2.w, 6) the one of i=yh. We clearly have

F@G,w,0)=F(0(3),w,0). (111.13)

Using Theorem I1.1, the hypo-analyticity of /r at (0, 6°) implies that (11.17) holds
for F. Since the map 0 is open (by using (I11.11)), we conclude from (111.13) that
(I1.17) also holds for F. Applying again Theorem 1.1 yields the hypo-analyticity of
h at (0, 6°).

Part 2. Assume that 6° satisfies the sector property of Definition IIL1 with  given
by
HD=(,0,...,0). (111.14)

We shall prove in this part that (11.17) holds.
After an R-linear change of coordinates in the w space, we may assume

¢®=(1,0,...,0). (111.15)
It follows from (I11.2)~(111.4) and (I11.14), (II11.15) that we have

¢|(2-f)=lm(122 “jz{) +Pn(z,,2,)
+0(z, " + |z, 121+ 1273) (111.16)

with a;eC, z’=(z,,....2,), meZ,, m=2, and P, is a real homogencous
polynomial of degree m satisfying,

P.l,<0, angles > % (IL.17)
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In order to eliminate the first sum in the right hand side of (IIL.16) we make a
holomorphic change of coordinates in (z, w) space defined by

wi=w,— ¥ azf, (111.18)
2
w.=w,, 2Zj=1.

m
Afterreplacing s, by s, —Ze ng a;z}, we can now drop the “tildas” and assume

that (111.16) holds with a;=0, 2 < j<m. (Note that Theorem IL1 (see (iii)) shows
that the hypo-analyticity of k at (0, ¢°) is not affected by a change of coordinates of
the form (I11.18).)

We shall need a final change of coordinates in €"*'. Let § be a positive small
real number to be determined at the end of the proof. Consider the dilation

:l = 62] N
z;=0"%,, 2ZjZn,
e g (I1L.19)
w, =0"W,,
wi=0w;, 25j<I.
For the sake of simplicity of notation we now drop the “tildas” and we assume

that

$1(2,2) = Pp(2,,2)+ 0(5), (111.20)
¢z, 0)=009), 2sjsi.

with P, satisfying (111.17).

We apply now Lemma 1111 with P= — P,,. and P,, satisfying (I1L.17).If f and D
are as in the statement of Lemma I11.1, there exists 1, >0 such that for0 <t £ 7o, we
have

=P, (20, 2)+Ref(z))—T™(Pul21, 20 |ap>0. (111.21)

Define

sen=vy(2).
D,={z,eC,; z,/teD}.
It follows from (II1.21) that we have
— Pz 2+ Re f(2)— (Polz1. 21))lan, > 0. (111.22)

Let h be a CR function. We wish to estimate the modified FBI transform of
u=yh, F(z,w,0), defined by (I1.16) and (IL.10). Note that after the change of
variables (111.19), h depends on the dilation parameter 6. We can choose the cut-off
function y to be independent of 6.
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We shall make use of Lemma II.1. The reader can easily check that U’. ¥ and C
in (11.20) and (I1.21) can be chosen independent of the parameter J, 0<d< 1.
Assume that

U={(z,.2)eC" |z)|<r. |21<r}. V={wel |w<r}

with r>0.

Since fi(z,)=0(""™)for |z|£ 1, and 0 <m’ <m (see proof of Lemma I111.1) we
can choose t>>0 satisfying

(i) 0<1Z 14, so that (I11.22) holds,

(ii) D.C{zy;lzy|<r}

(i) 1f(z )= 1/2C for |21= 1, where C is the constant in (I1.21),

A straightforward estimate of the integral defining F shows that there exists
C">0 (independent of ) such that, for |z]<r, w|< 1. and ¢ e RA{0}. we have

6™ VEDE(z, w, )| S C f o710 L0l s (111.23)
ml

with

0z, w. 3.0/lo]) = ;;—'I.%’e fiz) +Imw I%I —4(2.5) Fal

+(Rew —35)° —(Imw—¢(z, ).
If we put w=0, 6=¢°=(1,0, ...,0), and use (I11.20) we get
0(2.0,5.6% = — Po(z,.2)) 4+ Re f(2)) — (P2, 5P+ 524+ 0(8).  (111.24)
Using (111.22) we can choose & >0 (and fix it from now on) so that the right hand
of (I11.24) is >0 for z, €D, || < 7. and $e suppy.

Therefore we conclude from (I11.23) that there exist positive numbers r,(r, <r).
¢ and C” such that for

, r g
5 €dD..  [F1S5. o] o =r. Iwsr, (111.25)
we have,
le™® COF(z w g)| < C e 0, (111.26)

On the other hand, making use of (11.21) and (iii) above we get
le™ /=N F(z, w, 0) — G(z, w, 6))| S Ce ™12 (111.27)

for |z]<r, |w|<r, and s € R’
We conclude that for (z, w, ) in the sct defined by (111.25) the following holds

le~ NGz, w, g)| < Ce ™ ¢lo! (111.28)

with positive constants C”, ¢’
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Since G is holomorphic in z the maximum principle implies that (I11.28) holds
for (z.w.0) in the closure of the set defined by (IIL25) (ie. z, € D, instead of
z,€0D)).

Taking again (I11.27) into account we find that (111.26) also holds in the closure
of (111.25) (possibly with different C” and ). Finally since f, vanishes at the origin
we conclude that, for (z.w) in a neighborhood of 0 in €"**, and ¢ in a conic
neighborhood of ¢° in R", we have

|F(z.w.0)| £ Ce0ll,

with different positive constant, C and g. The proof of Theorem IILI is now
complete. [J

If QCR2"*! is equipped with an abstract CR structure (see Sect.I) with
dim ¥, = n. the characteristic set of the structure is the subbundle 3 of T*Q defined
by

(w.NeY «=(0.L,>=0, VLel.

We have dimY,, =1. A characteristic point (w,8)€ Y. is of finite type if there exist
M, M,,...M,eL®L such that

CO.[M,,[Mye..[M - M, ). 700> #0. (111.29)

The smallest positive integer m22 for which (I11.29) holds is the type at (cw, 0),
written m(w, 0).
A point we Q2 is said to be of finite type if (w,0) is of finite type for every
0eX \{0} (see Kohn [12], Bloom-Graham [7]).
We assume from now on that, as in Sect. lI, we are dcaling with a rigid CR
structure:
Q=UxV., 0ceUCR>, 0eVCR!,

and the L;'s are given by (11.4) with ¢ satisfying (11.1). The space of characteristic
covectors at 0, ¥, can then be identified with TV =R"

A simple computation shows that if o € T V\{0} then (0, o) is of finite type if
and only if (see (I11.1))

6 -¢mEO.
The type at (0,6) is m if there exist a, Be Z",, with |«|>0, |]>0,

6 - 2EH0)+0, (111.30)

and |a] +|f|=m is minimum.

In fact if the vector fields L; are defined by (11.14), then the formal power serics
$.) can be recovered from all the brackets of L; and L;, 1 £j=n, as cxplained
below.

As in [5], we introduce the following notation. If u=(u,. ..., u,) € C" we write

ﬁ'L= z &}L,, u'L=
j=1

™M a

u,L;.

j=1
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Define
qu, @)= —2]7(exp(ad(ﬁ *L+u-L))[aL,uL]),

= l( S +ad(@L+ul)[iL, uz".]) (11131

2! i=0]
(If A, B are two vector fields then (ad’A)B=[4, [A...[A, B]...]] where A4 appears j
times).
It is easy to see that g(u, @) is a real formal power series in u and i with vector
valued coefficients and with no pure terms.
Consider the second order differential operator

0

0

(I11.32)

Lemma I1L.2. Let g(u, 1) and H be defined by (111.31) and (I11.32) respectively. 1f
p(u, @0) is the unique formal power series satisfying

Hp(u,@)=q(u,q), (I11.33)
and having no pure terms, then

¢(nj(z’ Z-) EP(Z: Z-) .
Proof. The proof is a straightforward computation left to the reader, O

Remark I11.1. Assume that (L,, ..., L,) is another canonical basis of I (Def. L.3).
Let g(u, i) be the formal power series defined by (I11.31) with L;replaced by L;. Let
P(u, 1) be the corresponding solution of (I11.33) i.e.

Hp(u, @) =q(u, @),

p having no pure terms. Then it follows from Proposition 1.2 that there exists a
holomorphism u F(u) defined in a neighborhood of 0 in €*, F (0)=0, such that

Pu, @) = p(F(u), F(w)).

Therefore the type at (0,6°), and the validity of the sector property at ¢° are
independent of the choice of a canonical basis of . O

The following results are corollaries of Theorem IIL.1.

Theorem HL2. Let 6° e T V\{0}. Assume that (0,6°) is of finite type then at least
one of the following conditions holds

(i) Every CR distribution h in Q is hypo-analytic at (0, 6°).

(i) Every CR distribution h in Q is hypo-analytic at (0, — ¢°).

In addition, if the type at (0,6°) is odd then both (i) and (ii) hold.

Proof. Since (0, ¢°) is of finite type, the power series ¢° - & is not identically zero.
Thus we have,
0.0 ° ¢ln)(zv Z—) = Pm(zv Z-)+ 0('zlm+ l) ’
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where P,, is a real valued homogeneous polynomialin z,, ..., 2a, 21 --+s Zns of degree
m not identically zero and without pure terms.
We can write

P,,,(Z, E) = Z ca.ﬂzlz-ﬂ:' Z Qk.l(zs Z-)
laf+1Bl=m k+i=m
lalz 1. 18121 kzi.021

with
Qk.l(29 i)’-: | Ekca.ﬁfzﬂ .
1Bl=t

Thus for any aeC", teC,
P (at)= Qu.a, ay'r .

+i=m
1.121

>~
=~ I

k

w

The polynomials Q, , are not all identically zero, so we can find ae C™\0 such that
for some (k,[), Qs (a,d)+0. Therefore P,(at)=|{’Q,,-,(t), where Q,_,(1) is
homogeneous of degree m—2. We conclude there exists a sector & in the t-plane
satisfying one of the conditions

P,(at)ly >0 or P,lat)l, <0
and

S
m—2"m’

angle 2

The sector property of Definition 11L1 is therefore satisfied for at least one of
the vectors a® and —¢°. If m is odd then both vectors satisfy the sector property.
The desired conclusions follow now immediately from Theorem IIL.1. O

Corollary IIL.1. Assume that the origin is of finite type and that, for every
o€ R'\{0}, the type at (0,0) is odd. Then any CR distribution in Q extends
holomorphically at the origin.

Proof. The proof is an immediate consequence of the second part of Theorem
2. d

For points of finite type on rigid CR manifolds we have the following result.

Theorem 1113, Let M be the submanifold of €"*' defined by (11.2), and assume that
the origin s of finite type. Then any CR distribution defined in a neighborhood of the
origin in M extends holomorphically to a wedge of the form (11.14).

Proof. Let h be a CR distribution defined in 2= U x V. Making usc of Theorem
11.2, in order to prove Theorem II1.3, it suffices to show that

WF,, ohCT, (111.34)

where I is a strictly convex closed cone contained in R".
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Define the following set:
S={oeR\{0}; o does not satisfy the sector property}. (I11.35)
Theorem II1.1 states
WF,, ohCS. (I11.36)
We have the following:

Lemma IIL3. If the origin is of finite type, then the set S defined by (111.35) is a
convex cone of R\{0}.

The proof of (I11.34) is an easy consequence of (I11.36) and Lemma I11.3. Indeed
let I" be the convex hull of WF,, ohu{0}. Since the latter is closed in R’ and since
the convex hull of a closed cone is closed, we conclude that I is a closed convex
cone of R’, On the other hand, Lemma 1113 implies that Su{0} is a convex cone of
R! which does not contain any line. Therefore using (I11.36) we get

rcsuf{o},

and we conclude that no line is contained in I'. Thus I is strictly convex, which
proves (111.34).
It only remains to prove Lemma IIL3.

Proof of Lemma I11.3. Theorem I11.2 and its proof show that if ¢ € S then —a ¢ S.
Therefore if 6, 6’€ S then o+ ¢’ +0; we must show that ¢+’ €S.

Let y: {—+¥({) e C" be a holomorphic curve defined in a neighborhood of 0 in €,
and y(0)=0. Consider the formal real power series

f(cs C) =0- ¢(n)(y(‘:)’m
S €D =090, ¥QD)).
We must show that either f+ f'=0 or

JEO+/ WD =QmlE. D+0xL™ ) (I1L.37)

with moeZ,, my22, and Q,, is a real homogeneous polynomial of degrec my
which does not satisfy (I11.3), (I11.4).
Write (m,m'eZ , u{+ x0})

SEG.D=PLO+00Lm Y,
S EGD=P.D+oxLm ")

(if m=co then f=0, same for m’), where P, and P, are real homogeneous
polynomials of degree m and m’ respectively. Since o € S (resp. o’ € S), if m (resp. m")
is finite then P, (resp. P,,) does not satisfy (I11.3), (I11.4).
Itis clear that if m < m’ then (I11.37) holds and O, does not satisfy (111.3), (111.4),
If m=m’=o0 then f+ f*=0. It only remains to consider the case, m=m’ < oo.
Note that if P,({,{)=r"g(0) is a real homogeneous polynomial of degree
m, ((r,8) are the usual polar coordinates in the plane), then the reader can check
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(see proof in [5], Lemma 1.2) that P,, does not satisfy (I11.3), (111.4) if and only if
g(0)+g(9+ )5”) 20, VoeS'. (111.38)

Assume m=m’" and write
P.(.D=r"g(0), PoE.0D=r"g'(0).

Since both g and g’ satisfy (111.38) we conclude that g + g’ also satisfies the same
inequality, and therefore P,+P,, does not satisfy (I11.3), (I1L.4). Since the
holomorphic curve y is arbitrary we have shown that ¢ +0’ does not satisfy the
sector property i.e. ¢+¢’€ S. The proof of the lemma is complete. O

Example I11.1. Consider the generic submanifold M of €* of codimension 2,
defined by (ze €3, we€?)

Imw=¢(z.3).
with
$u(z. D =123 - 2317 — =) )'°.
Pz =1z —|z,l*.

Using Theorem I11.1 we can show that any CR distribution / defined on M is
hypo-analytic at (0, 6} for cvery o € R%\{0}, and thus it extends holomorphically at
the origin of €*.

Indeed if 0 =(0,,0,) € R*\{0} and ¢, >0, we can take 3({)=(0.{) in Theorcm
IL1.If ¢, <0, take () = (¢, 0). If 6, =0and ¢, <0, take }({)=(0,{). Finally if6, =0
and ¢, >0, take 3({)=(%¢?).

Note that the latter is a singular curve. The reader can easily check that we
cannot prove the hypo-analyticity of  at (0,0), when ¢=(1,0), by taking only
regular holomorphic curves in Theorem IIL1, applied to this example. O

Local holomorphic extension of CR functions to one side of a hypersurface in
€? can yield microlocal hypo-analyticity for rigid CR manifoids with any
codimension. We shall give a result in this direction. We start with the following
definition.

Definition I11.2. Let P, ({.) be a real homogencous polynomial in ¢, { (€ C) of
degree m=2. Let ¥ be the hypersurface of € defined by

Imy="P.0. (111.39)

where {, n denote the coordinates of C*.

We say that P, has the extension property if for any CR function f defined near
the origin on ¥, there exists a neighborhood ¢ of the origin in €* such that f
extends holomorphically to the side of ¥ defined by

{C.met.Imyp<P (.0} (111.40)
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We can state the following result:

Theorem IIL4. Let 6° e R\{0} and assume that there exists a holomorphic curve
{—y({) e C" defined in a neighborhood of 0 in C, such that

0° - g7 70)) =P (L. D+0@I ), (11L.41)

where P,, is a homogeneous polynomial which has the extension property (Def. 111.2),
Then any CR distribution defined in Q is hypo-anaiytic at (0, 6°).

If P, satisfies (II1.3) and (IIL.4) then it has the extension property (Theorem
I11.1, see also [5]), therefore Theorem IT1.4 can be considered as a generalization of
Theorem I11.1, Other sufficient conditions for a polynomial to have the extension
property could be found in Bedford [6] and Fornaess-Rea [9].

The following lemma will be needed in the proof of Theorem I11.4.

Lemma IIL4. Let P,({,{) be a homogeneous polynomial which has the extension
property(Def. 111.2), and 3 the hypersurface of €2 defined by (111.39). For everyp>0
sufficiently small there exists C>0 such thar if H((.n) is holomorphic in a
neighborhood in €? of the set

B={{imeCh KIS, L1}, (111.42)

then
sup |H((, —i)l S C sup|H(C, n)l. (111.43)
e BnL

Proof. Let E be the Banach space of CR functions defined on BAY and continuous
on its closure BAY.. Since every function f in E extends to a side of 3" of the form
(IT1.40), using Baire’s category theorem as in [3] (proof of Theorem 5.2), we can see
that the neighborhood ¢ in (111.40) can be chosen independent of f € E.

If >0 is small enough the set

{C.meC?llse.n=—ig}

is a compact subset of the open set defined by (111.40). Estimate (111.43) then follows
from a standard use of the closed graph theorem. (In fact the constant C in (I11.43
can be taken to be one.) 0O

Proof of Theorem I111.4. After repeating Part | of the proof of Theorem 111.1, we
can assume that the curve y in (I1L41) is given by

1"0=(,0,...,0),
and that ¢°=(1,0,...,0).

We make the change of coordinates (111.19) where the small dilation parameter
d is to be determined later.

By making 6>0 small, we can assume that the modified FBI transform
F(z,w, ¢) and the holomorphic function G(z, w, 6) given by Lemma I1.1 are defined
for [z|£2, IW]£2.

We shall apply Lemma I11.4 to the function

H(l,n; 2',w,0)=G(z,W,0)|., -, (111.44)

wWySntigtw, W =w
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(z=(z,,2), w= (wl,w) W =(W,,W)). We think of ({,n)eC? [{|£1, M L1, as
variables, and of z’, w, o as parameters.

In fact for all practical purposes we can replace G in (111.44) by F. Indeed in
doing so we make an error of exponential decrease in o}, since F — G satisfies (11.21)
(with C independent of 9).

After replacing G by F in (lll 44) as we have said, the left hand side of (I11.43)
becomes for each z’, w, 6, |z]<4, w|£4, 0eR),

sup |F(z,w,0)| (111.45)

Iz1)Se

which is the quantity we want to cstimatc.
Now we estimate the right hand side of (111.43) (after again replacing G by F in
(H11.44)). We have, for z’, w, ¢ fixed as above,

sup |H({,n; 2/, w,0)|

(C.meHnk

§CI sup e’|°|ﬂ(-3¢"l.w.f.ﬂllﬂlllz(g)ld_q’
=R
|Ren| <t

with C independent of 6, z’, w, g, and

(C Hen, w, s.l |)

——1|[lmw,+g+P (P NSNS

I—I[lmw $C, 2. 0, 2]+ (HRew, + Ren—3,)*

—(Imw, +0+ Po(,D)— ¢)* + (dew —5)? = (Imw'— §)* .

We have used the notation w=(w,,w'), §=(5,.5), §=(4,¢') etc....
Making use of (I11.20) we get

E(, Ren,0,5,6%) =0 —0* +(Ren—35,)> +5>+0(5). (11147

From now on we fix g, 0 <¢ < |, so that (111.43) holds, and then § >0 so that the
right hand side of (I11.47) is >0 for Sesuppy.

We conclude from (111.46) and (I111.47) that there exists r>0 such that, if
‘— -0 | <r, |wj<rand |z'| £4, then the left hand side of (111.46) is of exponential

decay in |o|. Thus, so is the quantity (I145), by using (I111.43). The proof of
Theorem I11.4 is now complete. ]

Remark I11.1. For tube CR manifolds (which are special cases of rigid manifolds,
see Sect. I) defined by

Imw=4¢(y)
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(z=x+iyeC™ we ') with ¢ smooth and satisfying ¢(0) =0, d#(0)=0, sufficient
conditions for hypo-analyticity at (0, 5), s € R\{0}, of CR distributions were given
in [4].

When ¢ is rcal analytic, a necessary and sufficient condition for the hypo-
analyticity of any CR distribution at (0, ¢) is that in any neighborhood of 0 in R”
the function y+so - ¢(y) takes strictly negative values. We refer to [4] for the
proof of this result. One can also give a different proof by means of the simplified
FBI integral used throughout this paper. This is left to the reader.
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