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§1. Introduction and main results

A smooth manifold M is called CR if there exists a subbundle ¥~ of CTM, the
complexified tangent bundle of M, such that

¥n¥ =0 and [V, ¥]cV . (1.1)

A function or distribution on M is called CR if it is annihilated by all the sections of
¥ If dimgM = 2n + | and dimc¥” = n then we say that M is of CR dimension n
and CR codimension 1.

If (M, ¥") is a CR manifold then N is called a CR submanifold of M (of the same
CR dimension) if N is a submanifold of M satisfying

¥i|y<CTN. (1.2)
Note that it follows from (1.1) and (1.2) that
2dimcY” £ dimgN < dimgM , (1.3)

and M and N have the same CR dimension. In what follows it will be understood
that by a CR submanifold of M we will mean that (1.2) is satisfied.
We introduce the following definition.

Definition. If M is a CR manifold then M is minimal at mye M if there is no CR
submanifold N containing m, with dimgN < dimgM.

The importance of this notion of minimality was introduced by Tumanov [14],
who showed that if M is a generic embedded submanifold of C* *‘ and my € M then
if M is minimal at m, every CR function on M, defined in a neighborhood of
me, is the boundary value of a holomorphic function in an open wedge of C" !
of edge M.

It is easy to see that if M is of finite type in the sense of Bloom-Graham [6] then
M is minimal at m,. Indeed finite type means that the Lie algebra of the sections of
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¥ "and their conjugates span the complexified tangent space at my. If these are also
tangent to N then the germs of N and M are the same at mq. If (M, ¥ ') is real
analytic.then minimal implies finite type; indeed, if M is not of finite type, then the
Nagano leaf [9] passing through m, would be a proper real analytic CR sub-
manifold, contradicting minimality. If M is only smooth, it could be minimal
without being of finite type.

The main result of this paper is to prove that Tumanov's minimality condition
is also necessary for holomorphic extendability. Recall that a CR manifold M of
CR dimension n and CR codimension ! is locally embeddable if in a neighborhood
of every point there exist n + [ smooth CR functions with linearly independent
differentials.

Theorem 1. Let M be a locally embeddable CR manifold which is not minimal
at mge M and N a CR submanifold of M containing mo, with dimg N < dimgM.
Then there exists a CR distribution T defined in a neighborhood U of my with
suppT=NnU.

A slightly more general version of Theorem 1 is given in §6 as Theorem 4.

A submanifold M of C*** of dimension 2n + [ is called generic if it is locally
defined, near mgeM, by p,=0, j=1, ..., |, where the p; are smooth, real
functions such that their complex differentials dp; are linearly independent. Such a
manifold M equipped with ¥", the induced tangential Cauchy-Riemann bundle of
C"*!, is a CR manifold of CR dimension n and CR codimension L.

Recall that a wedge of edge M is an open set of C" *! of the form

w(0, ) ={Ze0, p(Z)eT},

where @ is a sufficiently small open neighborhood of mg in C"*', I' an open cone of
R and p =(p,, .- -, p) where the p; are the defining functions of M near m, as
above. We can now state our nonextendability result.

Theorem 2. If M is an embedded generic CR manifold which is not minimal at mq then
there is a smooth CR function defined in a neighborhood of mq which does not extend
holomorphically to any wedge with edge U, where U is a neighborhood of mq in M.

Combining Theorem 2 with the sufficient condition of Tumanov we obtain the
following.

Corollary 1. If M is an embedded generic CR manifold and mge M, then every germ
of a CR function at mg extends holomorphically to a wedge of edge M if and only if M
is minimal at mgy.

The following result shows uniqueness of a CR submanifold of minimal
- dimension and gives two intrinsic characterizations of such a submanifold.

Theorem 3. If M is a generic CR manifold and mq € M. there is a unique germ Noofa
CR submanifold contained in M, mo€ No, of minimal dimension. Also Ny may be
described as follows.

(i) For every sufficiently small neighborhood U of mgy in M, there is a neighbor-
hood U’ < U such that Ng U’ consists of all points me U’ which can be reached
from mq by a finite sequence of integral curves contained in U of sections of Re¥ .
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(ii) For every sufficiently small neighborhood U of mg in M. there is a neighbor-
hood U’ < U such that No U’ is the union of sets of the form Z (bD), where D is the
unit disc in C and Z: D— C**" is continuous. holomorphic in D and satisfying
moeZ(bD)c Un M.

We note that the uniqueness of N, and its characterization given by (i) in
Theorem 3 hold even in the case of a nonembeddable CR manifold.

The study of extendability of CR functions began with the celebrated paper of
Hans Lewy [8] in the '50's in which he showed extendability to one side from a
strictly pseudoconvex hypersurface. Other sufficient conditions were subsequently
obtained by a number of mathematicians. Recently, a necessary and sufficient
condition for every CR function to extend to at least one side of a hypersurface of
class C? was obtained by Trépreau [12]. The authors obtained some sufficient
conditions [2] for extendability in the higher codimension case; these results have
been generalized by Tumanov, as explained above. They also obtained in the real
analytic case (loc. cit.) necessary conditions, i.. that M must be of finite type, in
order that extendability to a wedge hold. Since Tumanov proved that finite type is
also sufficient for extendability, the case of real analytic generic manifolds was
completed by Tumanov's work. Our Theorem 2 above now settles the smooth case.

Singular solutions for real analytic vector fields supported on submanifolds
were constructed by Zachmanoglou [15] in the study of analytic hypoellipticity
and propagation of zeroes. Our solutions in Theorem 1 have the same general form
as his, but in our case the vector fields are not real analytic.

We would like to thank Jean-Marie Trépreau for several interesting con-
versations and, in particular, for suggesting to us the formulation of Theorem 3,
and the use of Sussmann's work [11] in its proof.

§2. Local coordinates

We assume here that M is an embedded generic CR manifold which is not minimal
and N a CR submanifold of M passing through my. We first introduce local
coordinates around mgy which will be used in the proof of Theorem 1. Assume that

dimgM =2n+ 1, dimgN =2n+ !, and dimc ¥ ==n, 2.1

with0 g, <L
We may choose a local embedding so that M is parametrized in C" *! where the

coordinates are denoted by z = (z,, ..., 2, W= (W, ..., W), by
Imw;=¢;(z,2,s), 1£jS I, s=Rew, ¢(0)=de(0)=0. (2.2)
A basis of CR vector fields L;, j=1,...,n can then be written in the form
7 ]
Li=—+ x,(2, 2, S)—, 2.3)
i (?:] 1 §§§l lk( CSy

With 1]&(0) = 0.
Assume that N is given by p;(z, £, 5) =0, 1 £j £/, where l; = I -1, and the
differentials dp; are linearly independent. Since the L; are tangent to N, we must
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have L;p, = 0on N,and L,p. = 0 on N, since the p; are real valued. Hence, by (2.3),
f&(O) = .—p’(O) = 0. We conclude that rank ( Pi (0)) ={,. After a linear
0y Y 0s, 18js1,

. o 15ks!
change of variables and using the implicit function theorgm.s we can assume that N
is given as a subset of M by

Sh +]j = '/’1(2. Z-, Sgre e sh)’ l é-’ § 12’ wl(o) = dlll’(O) =0
Put fj=sh+j“"ml’j(z’ Zs) j=1

(X, .V' S, t) = (xt .V, sh

In these coordinates the L; become

(2.4)
, 13, and take for coordinates on M

UK SN ST 7 N

d

LJ a- Z ﬂll

12.3)
where B, and g, are functions of (x, y, 5, t). We introduce the vector fields
obtained from L, by setting ¢t = 0:

L} = _3_ + Z Bulx, ys 5 0)

oy
The L° form a basis of the sections of the CR bundle r&stncted to N. W¢

j}-s,+x¢,(z.z,s,t-{-qll(x,y.s)). 1gjsl, )
gi=t,+ ¥z % 8) +id;.,(2 2 5t +¥(2 2, 9)) 1gjsi,

where the ¢, are given by (2.2) and ¥; by (2.4). Note that we have L; f, = L ... "\
For a smooth function h(x, y, s, £) we write

h(x, y, s, 1) = h°(x, y, s) + Z K (x, y, ), + O(1t*) .

0 we conclude that L)f? =

define I, vector fields R; of the form R;= L=1 ap(x, ¥ s)— satisfying the
following relations:

Since L;f, = l<15n,lSkSl, As in [1] we

(L3, R]=0, [R,R,1=0 R;fp=

= ejp , 1:3)

where ¢;, is the Kronecker symbol. It follows from (2.7) and (2.8) that we huve

¢ 4 R
L=—-73 iR 129

i k=1
Since the R, are linear independent we obtain, for j = 1 , n,
¢
Lj = L? + z JgpfkR + Z

il 5 - {2.10)
1, 1sksh ct,
A 1srgl,
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§3. Construction of singular solutions. Proof of Theorem 1

We shall use the coordinates (x, y, s, t) introduced in §2 and take a basis for the
sections of ¥~ of the form (2.10). We shall construct a distribution solution T of
the system of equations L,T7=0 of the form T = V(z, z,5) 6(t), where
5(t) = 6(t,)®. . . ® 8(t,,) is the dirac measure at the origin in R*and Vis a
smooth function nonvanishing at 0.
Using the relation
d

Iy 5‘—5(1) = —g,d(t)

we conclude that ¥ must satisfy the equations

Lv— Y Wlzis)V=0 1sjsn. 3.1
lé's':

Since V is nonvanishing, equation (3.1) is equivalent to

LY(Log V) - Y ulz.2,5=0. (3.2)
1srsi, .
Therefore, it suffices to show that ¥, <, < 1,#%,(z, Z, s) is in the range of L{. We
begin with the calculation of the coefficients u},. It follows from (2.10), that
if L;h = 0 then

0
L,h = L}O + Z }’?kpth'Rp + Z ﬂ?&,tk é[—)(ho + z hktt)-l-O(tz) Py

18kst, I1sksi, 1sksh
1spst 1srst (33)
where we have used the notation h = h® + Y| <, 51, h'ti + O(t?) as in §2.
Setting the coefficient of ¢, equal to 0 in (3.3) we obtain :
Lo+ Y AR+ Y ufh=0. (3.4)

lspsi Isrst;
Taking for h the functions f,, | Sq 1, defined in (2.7), and using the relations
R,f} = ¢, in (2.8), we obtain,

Bo= ~Lifs= T WufplSisn 1Sksh, 1Spsh. 69
rah

In (3.4) we now replace h by g,, 1 £ q £ I,, defined in (2.7) and i0p bY its
expression given in (3.5). We obtain

Lige+ X (—L;’f:— Y u}i.f;)R,g2+ Y 1%y, =0. (36
1sps!t, 18rsi, 15781,

Rewriting (3.6) by collecting the coefficients of u}’,‘, we have

o= T SRe)= -me+ T @R 6
18rsl; 1spst 1spst,
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Let .o/ be the matrix (g} — Y1 < p <1, SpRp9 N s r.g 51, 30d D2, 2, 5) = det /.
By Cramer’s rule applied to (3.7) we obtain

D
y}’,‘,=%, 1gjsn 18krsl,, (3.8)
where D, is the determinant of the matrix obtained by substituting the rth column
in .o/ by the vector (— Lg% + T spse, (LY BIR G 1 Sa <1, Summing (3.8)
over r we obtain

—L°D
1; = —LJlogD . 39)

) y}’,,:D"‘ Y D=
lsrsl; Isrsh

Here we have used the identity (L3f¥)R,gJ = LJ(f}R,43) which is a consequence
of [L?, R,] =0 (cf (2.8)) and L}g] = 0.

Note that D(0) + 0. From (3.2) and (3.9) it follows that a desired solution of (3.1)
is given by ¥ = D~'. This completes the proof of Theorem 1.

§4. Proof of Theorem 2

We shall first show that the distribution solution 7 of Theorem 1 is not the
boundary value of a holomorphic function in any wedge with edge M. We shall
then use T to construct a CR function of class C* with the same property. We use
the closed graph theorem, together with a result from [4] to show that there exists a
smooth CR function which does not extend.

We review here some basic properties of boundary values of holomorphic
functions in wedges. If M is an embedded generic CR manifold of C**' of
dimension 2n + [ given by Imw = ¢(z,Z,5) as in (2.2), and I an open strictly
convex cone of R! and @ an open neighborhood of 0 in C"~ ! we define the wedge
¥, I') by

W€, N ={(we0 Imw - ¢(z 2 sel'} . {4.1)

If 1 is a holomorphic function in #7(C, I') with slow growth at the edge M. ie.
[h(m)} & C dist(m, M)~ for me #°(C, I), then h has a boundary value byh as a
CR distribution on M n €. Furthermore, if by h = 0 in an open set of M ( and
% (€. ') is connected then h vanishes identically. (For a flat wedge see [7]. and for
the general case see [1] and [2])

We begin with the following result.

Proposition 4.2. Under the assumptions of Theorem 2. for any k 2 O there is a CR
function of class C* defined in a neighborhood of my which does not extend to any
wedge with edge M near mq.

Proof. The fact that the distribution solution T of Theorem 1 is not the boundary
value of a holomorphic function in any wedge with edge M is proved by the
following lemma.
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Lemma 4.3. Let M be an embedded generic CR manifold and S a CR distribution on
M, nonzero in any neighborhood of mg. with the following property. For every
neighborhood U of mg in M there is an open set U’ < U such that S vanishes in U".
Then in any neighborhood of mg, S is not the boundary value of a holomorphic
function in a wedge with edge M.

Proof. Indeed, it follows from the remarks preceding Proposition 4.2 that if S were
the boundary value of a holomorphic function 4 in a connected wedge ¥ (C, I'),
then, since S vanishes in an open subset of any neighborhood of m,, h would have
to vanish identically, which would imply that S is the zero distribution. Since I’ is
assumed to be strictly convex, the wedge (€, I') is connected il O is connected
and sufficiently small. This proves the lemma.

To construct the C* CR function of the proposition we shall use the following.
As in §2 we can find ! vector fields D; satisfying, for | Sg=n, | Sj,p s,

[L,. D;)=0, [D;,D,]=0, and Dys, + id,(z, 2, 5)) = ¢, .

where the ¢, are as in (2.2).

Lemma 4.4. Let S be a CR distribution defined in a neighborhood of mq in M. Then
for any k there is a CR function fe C* defined near my such that

S=( ) D})’f.

15js!
where the D; are the vector fields defined above.

This lemma is a consequence of the representation of distributions annihilated
by a system of complex vector fields given in [5] (see also [13]).

We may now prove Proposition 4.2. By Theorem 1 we can find a CR
distribution T in an open subset U with support in N. By Lemma 4.4 we may write
T = (Y1 5; 51 D}V with fa CR function of class C*. We reason by contradiction.
Assume that f is the boundary value of a holomorphic function H in a wedge
w(€, T'). Since D is of the form

¢ g
Dj=‘._‘+ aik‘_.',
ow; 1 <Tsi oWy

T
CwW;

inequalities. We conclude

(see [3]), we have b(EH ) = D;(bH). Note that fTH is of slow growth, by Cauchy's

W,

cH P é2 14
(*“yl, 15751 1sj8! C\‘.i

It would then follow from (4.5) that T is the boundary value of a holomorphic
function, contradicting the conclusion of Lemma 4.2. The proof of Proposition 4.2
is now complete.

Proof of Theorem 2. We assume by contradiction that every smooth CR function
defined near m, extends holomorphically in some wedge. We claim that for every
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open neighborhood U of mye M there exists a wedge #'(C, I') to which cvery
smooth CR function defined on U extends holomorphically. Indeed, this follows
from an argument using the Baire category theorem by a slight modification of the
proof of Theorem 7 of [4], where the corresponding result is proved for continuous
functions. We shall show that if k is sufficiently large, then any CR function of class
C* defined near m, extends to a wedge, contradicting Proposition 4.2.

If U is a neighborhood of my, let E be the space of smooth CR functions on U
and ¥ (@, I') the wedge associated to U by the claim above and denote by # the
space of bounded holomorphic functions in #°(@, I'). By the closed graph theorem
the mapping E — s which to each CR function associates its holomorphic
extension is continuous. We can therefore find k, U’ relatively compact in U and a
constant C such that for all fe E,

SUp: ewie.nl 1) S C Supm e 1D flm)] (4.6)
Izl 8
where f is the holomorphic extension of f. Since every CR function of class C* is
locally a limit, in the C* topology of entire functions [5], it follows from (4.6) that
every CR C* function on U extends holomorphically to #°(@, I'). Theorem 2 is
then proved by contradiction.

§5. Characterization of minimal CR submanifolds; proof of Theorem 3

The proof of the uniqueness in Theorem 3, as well as the characterization in (i), is
essentially based on the following localized version of a result of Sussmann [11):
Let{X,,...,X,} beasetof smooth real vector fields defined near the origin in RY,
and U’ a sufficiently small neighborhood of 0. Then there is a unique submanifold
N < U’, 0e N, such that the X are all tangent to N at every point of N and for
which dim N is minimal with this property. Its uniqueness follows from the fact
that it is the union of all points in U’ which can be reached by a finite sequence
of integral curves, contained in a slightly bigger neighborhood U, of the vector
fields X;.

We now consider the case of a CR manifold M. We take for X,,..., X, 2
basis for the real and imaginary parts of the local CR vector fields L;, i.e. for the
sections of Re¥”. A submanifold N of M is a CR submanifold of the same CR
dimension if and only if all the X are tangent to N. Now the uniqueness and the
characterization (i) follow from Sussmann’s result stated above.

To show that N, can be characterized by (ii), we assume that M is embedded
and use the following result of Tumanov [14): There is a CR submanifold of M
through m, contained in the union of sets of the form Z(bD), where Z: D-C""'is
continuous, holomorphic in D and satisfying mee Z(pD)c U~ M, and U is a
sufficiently small neighborhood of m, in M. We shall show that the image of bD
under all such holomorphic discs Z lies in the minimal submanifold ¥,. Hence the
proof of Theorem 3 will be completed by the following.

Lemma 5.1. Let M be a generic CR submanifold of C**' and N a CR submanifold
containing mg. Then there is a neighborhood U of mq in M such that for every
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Z: D — C" ! with Z holomorphic, continuous in D and satisfying
moe Z(bD) < U n M, then Z(bD) = N.

Proof. We use the coordinates (X, y,5,£) = (X, §, Sya. « -+ Stabyse v s 1,,) introduced
in §2, so that N is the submanifold {¢ = 0}. For a disc Z as in the statement of the
lemma, we write Z() = (2(0), w({)); we may assume without loss of generality that
Z(1) = mgy. Then

Rew(() = — T,(d(z("), 2(), Rew(-))((), {ebD, (5.2)

where ¢ is given by (2.2) and T, fis the harmonic conjugate of f; defined on bD
vanishing at 1. As in (2.7) we may write

Rew,(0) =50 1Sjsh,
Rew,({) = ;(0) + ¥,z =1 s), 1SjS,.
Equation (5.2) becomes
5= — Tl(¢& Ls,t+yx, pNE, 1SS,
1) + ¥,z 2(0), () = — T (@j44,(z 5, 5,1 + Y12, M), 1=5js1,.
(5.3)

We claim that (5.3) implies that ¢({) = 0 for all {ebD, which is the desired
conclusion. We shall show first that

Lg(!ll,'(z» 20 S) + i¢j¢l.(z’ ‘-':’ S, 4‘(20 7:' S)) = 0! l é] § 12- 1 é k é n, (5-4)
where L{ is given by (2.6). Indeed, since
Lyg;=0, 1Sjslh, 1sksn, (5.5)

where g; is given in (2.7), we obtain (5.4) by putting ¢ = 0 in (5.5). Now the claim
follows from a standard approximation argument as follows. Since

97 =,z 2, ) + i1, (2 2.5, ¥z, 2 s)) is a CR function for the induced CR
structure on N, it is the uniform limit of holomorphic polynomials [5]. By the
maximum principle, the pullback of ¢? to bD by the map (z(S). s(5)) extends
holomorphically to D. Therefore we have, since ¢ ;0)=0,

iz 20, SO = = Ty(8;+1, 25 ¥z 2 9)()

which proves that 1({) = 0 is a solution of the second equation in (5.3). Since the
map

t— Tl [¢j#l|(:‘ -:; S, t+ \!’(:9 -=- S)) - ¢]+l;(zv -=9 S, '1’(3- :-v S))]

is a contraction in L2(bD) if the neighborhood U of the lemma is sufficiently small,
the solution is unique, which proves the claim, and completes the proof of the
lemma.

§6. Other results and remarks

Inspection of the proof of Theorem 1 shows that its conclusion holds under
assumptions weaker than embeddability of M. We can also weaken the smoothness
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assumption for M. If ¥ is a CR submanifold of an abstract CR manifold of class C*
we shall say that M is locally embeddable of order 1 along N if around every point
mge N there exist n + [ functions Z; of class C? such that for every L section of ¥

LZ;(m) = O(dist(m. N)*).

Theorem 4. The conclusion of Theorem | holds if M is of class C* and locally
embeddable of order 1| ulong N or if dim N = 2n. In addition, without assuming
embeddability, if N is of codimension 1 in M then the function which is identically
equal to 1 on one side of N in M and equal to O on the other side is a singular CR
Sunction.

Proof. As mentioned above. the conclusion when M is locally embeddable of order
1 along N follows by inspection of the proof of Theorem 1. To prove the statement
when dim N = 2n, we choose coordinates u = (uy, . . .. U3, ) t = (#;,. ... ) such
that N is given by t = 0. We may write the L; in the form

2n é i}
L = a2, ) — aeltdy E) 8 — 6.1
j k;‘ 1)&(“ 1 g + s grél ﬂﬂzr( ) "6:, 6.1
By the Newlander-Nirenberg Theorem [10]. we may find coordinates
X=(XjeenrsXh ¥ =(V....y,) such that after a linear transformation on the
basis L; we have

2n é ¢

=3 2300 0)— =

! kgl il )i’u,‘ cz;

We then have
¢ . é é ¢
Lj=?+ z /.j,‘,l,::—"l- Z \'jk,l,a‘T"l' z Bjxels = - (6.2)
€3 tskgn €k  15kgn Sk Iskrsli ct,
Lsrsi . 1grst!

As in the proof of Theorem |, we look for a solution of the form V(x, y)d(t). For
this, it suffices to solve the system

L+ Y itz isiV=0 15j=sn. (6.3)
1srsl,
The equations (6.3) can be solved since the compatibility conditions needed for
the existence of a solution follow from the commutation relations [L;. L,] = O for
all j, k.
Finally, we consider the case where codim,, N = L. Since the L, are tangent to
N, the Heaviside function H which is equal to 1 on one side of N and 0 on the other
side satisfies L;H =0 in the distribution sense. This completes the proof of
Theorem 3.

Remark 6.4. The conclusion of Theorem ! need not hold without the embedd-
ability condition, as shown by the following example. Let M = R* with coordinates
(x. ». s, 1) and let

- -

- ( <
i+ s 2o 6.5)
&)

.Jl -
' o’

L= :

4 oy
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with g a smooth function in R* not in the range of the Lewy operator

¢

L= _—-—iz % (see [8]). It is clear that finding a solution of the form

-~—
-

CZ
V(x. y, 5)3(), with V(0) + O is equivalent to solving the equation L°V — uV = 0.
Note that in this example the Heaviside function H(t) is a singular solution.

Proposition 6.6. If M is a real analytic generic manifold which is not minimal at my,
and N a real analytic CR submanifold of M, then there is a holomorphic submanifold
) in C"*! such that N = M n ¥ with dimgN = dim¢J¥ + n. In particular, the
minimal CR submanifold through my is of this form.

Proof. We choose coordinates (x, y, s, t) as in §2. Here the ¢, and , as in (2.7} are
real analytic functions in a neighborhood of 0. Since L7g = 0 and the g{ are real
analytic, there exists a holomorphic function G,(z, w,, . . . , w,) such that gp is the
restriction of G, to N. In the new variables w) = w;, 1 £j < I}, and wj,, = w; .
-Gz, wyy .. W W 1SjSh,wehave N=Mn{wj,, =0,15j< 1,}. This
proves the first statement. To prove the second claim, it suffices to observe that
when M is real analytic, the minimal CR submanifold through m, is the Nagano
leaf (see [9]) of the sections of Re¥”, which is real analytic.

Remark 6.7. If M is assumed only to be smooth rather than real analytic, the
minimal CR submanifold N need not be of the form N = M nJ# with ¥ a
holomorphic submanifold. Indeed, consider the generic submanifold of C* para-
metrized by (x, y. s, £) and given by {(z, w,, wa): w, =5 + ilz|3, w, = ¢ + h(x, 3. 5)}
¢ch [ ¢h
_— 7 =

where h is a smooth non real analytic function satisfying 3 E

Here N is given

d . . .
by {t=0} and L = EEE —iz 3 If N were the intersection of M with a complex

hypersurface, there would exist a holomorphic function % and holomorphic
coordinates (2, w),w3) such that h is the restriction of JX (=, wy,w}) to N,
contradicting the assumption that h is not real analytic.
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