A Distribution –
Theoretic Proof of Kirillov’s Character Formula
for Nilpotent Lie Groups

Linda Preiss Rothschild

Let G be a connected, simply connected nilpotent Lie group, and π an irreducible unitary representation of G. Dixmier [2] showed that the operator $\pi(f) = \int_G \pi(x) f(x) \, dx$ is of trace class for every smooth function f of compact support on G; there is a well-defined distribution on G given by $f \mapsto \text{Tr} \, \pi(f)$. Kirillov [4] has given an explicit formula (1) for $\text{Tr} \, \pi(f)$. In this note we give a new proof of Kirillov’s formula, using the Bochner-Schwartz theorem for the Fourier transform of a positive definite distribution. Our proof is inspired by Schwartz’s treatment [7] of representations of the Lorentz group. (See also [3].)

Let \mathfrak{g} be the Lie algebra of G and \mathfrak{g}^* the linear dual of \mathfrak{g}. G acts on \mathfrak{g} by the adjoint representation Ad and on \mathfrak{g}^* by the co-adjoint representation Ad* given by

$$\langle X, \text{Ad}^* x \cdot Y \rangle = \langle \text{Ad} x^{-1} \cdot X, Y \rangle \quad Y \in \mathfrak{g}^*, \; X \in \mathfrak{g}.$$

Since $\exp : \mathfrak{g} \to G$ is a diffeomorphism, the map $f \mapsto f \circ \exp$ is an isomorphism between $\mathcal{D}(G)$ and $\mathcal{D}(\mathfrak{g})$, the spaces of smooth functions of compact support on G and \mathfrak{g} respectively. Hence the spaces of distributions $\mathcal{D}'(\mathfrak{g})$ and $\mathcal{D}'(G)$ are isomorphic by the map $T \mapsto T \circ \text{exp} = t$, where $t(f) = T(f \circ \exp)$ for $T \in \mathcal{D}'(\mathfrak{g})$, $f \in \mathcal{D}(\mathfrak{g})$.

Now let dX be a Lebesgue measure on \mathfrak{g} and dx the corresponding Haar measure on G. $T \in \mathcal{D}'(\mathfrak{g})$ (resp. $T \in \mathcal{D}'(G)$) is called central if it is invariant under the adjoint representation of G (resp. inner automorphisms of G). T is called positive definite if for any $F \in \mathcal{D}(\mathfrak{g})$, $(T(F \ast \tilde{F})) \geq 0$, where \tilde{F} is the function $X \mapsto \tilde{F}(-X)$ and convolution is defined by

$$F \ast \tilde{F} = \int_{\mathfrak{g}} F(X) \tilde{F}(Y-X) \, dX.$$

t is called positive definite if for any $f \in \mathcal{D}(G)$, $(f \ast \check{f}) \geq 0$, where \check{f} is the function $x \mapsto \check{f}(x^{-1})$ and the convolution is defined by

$$f \ast \check{f}(x) = \int_{\mathfrak{g}} f(x) \check{f}(y^{-1}) \, dy.$$

$T \in \mathcal{D}'(\mathfrak{g})$ is central if and only if the corresponding $t \in \mathcal{D}'(G)$ is central. For positive definite distributions one has

Schiffman’s Theorem [6]. Let T be a central distribution of \mathfrak{g}. Then T is positive definite as a distribution of \mathfrak{g} if and only if $T \circ \exp = t$ is a positive definite distribution on G.
If π is an irreducible unitary representation, the distribution $f \mapsto \text{Tr} \pi(f)$ is called the \textit{character} of π. Kirillov's character formula is given as follows.

\textbf{Theorem \cite[Theorem 7.4]{4}.} Let G be a connected, simply connected nilpotent Lie group and π an irreducible unitary representation of G with character $\text{Tr} \pi$. Then there is an $\text{Ad}^* G$-orbit \mathcal{O} in \mathfrak{g}^* and an invariant measure $d\mu$ on \mathcal{O} such that for any $f \in \mathcal{D}(G)$,

$$\text{Tr} \pi(f) = \int_{\mathcal{O}} f^* \, d\mu \quad (1)$$

where

$$f^*(Y) = \int_{\mathfrak{g}} f(\exp X) e^{i\langle X, Y \rangle} \, dX, \quad Y \in \mathfrak{g}^*.$$

If t is the trace of a unitary representation of G, it follows that t is a positive definite, central distribution on G. Furthermore, if t is a character, then t is extremal in the following sense: if t_1 is any other positive definite, central distribution of G with $t - t_1$ also positive definite, then $t_1 = \lambda t$ for some $\lambda > 0$. (See \cite[§ 6.7]{1}.)

We shall need Schwartz's generalization of Bochner's theorem \cite[vii, 9; 11, Theorem XVIII]{8}:

If T is a distribution on \mathbb{R}^n, then T is positive definite if and only if T is tempered and \hat{T} is a positive measure, where \hat{T} is the Fourier transform defined by $\hat{T}(F) = T(\hat{F})$ with $\hat{F}(Y) = \int_{\mathbb{R}^n} F(X) e^{-ix \cdot Y} \, dX$, for $F \in \mathcal{D}(\mathbb{R}^n)$, $Y \in \mathbb{R}^n$.

A measure μ on \mathfrak{g}^* will be called \textit{invariant} if $\mu(E) = \mu(\text{Ad}^* x \cdot E)$ for all $x \in G$ and all measurable $E \subset \mathfrak{g}^*$. The main step in proving the theorem is contained in the following.

\textbf{Lemma.} Let π be an irreducible unitary representation of G with character t. Then the distribution T on \mathfrak{g}_0 corresponding to t, is tempered and \hat{T} is a positive tempered invariant measure μ on \mathfrak{g}^*, whose support $\text{supp} \mu$, is contained in the closure $\overline{\mathcal{O}}$ for some orbit \mathcal{O} in \mathfrak{g}^*.

\textbf{Proof.} T is a central positive definite distribution on \mathfrak{g}^* by Schifman's Theorem since t is positive definite, central on G. By the Bochner-Schwartz theorem \hat{T} is a positive tempered measure μ on \mathfrak{g}^*. Since T is central, μ is $\text{Ad}^* G$-invariant.

Since t is extremal among positive definite invariant distributions, it follows that μ is extremal among positive invariant measures; i.e. if μ_1 is any positive invariant measure on \mathfrak{g}^* with $\mu_1 < \mu$, then $\mu_1 = k \mu$ for some constant k. Hence it follows (see Schwartz \cite[pp. 72-73]{7}) that $\text{supp} \mu \subset \overline{\mathcal{O}}(x)$ for some $x \in \mathfrak{g}^*$.

We may now prove the Theorem. Let T be the distribution on \mathfrak{g} corresponding to $\text{Tr} \pi$. Then T is also positive definite and central, and (1) is equivalent to the statement that \hat{T} is an invariant measure μ such that $\text{supp} \mu \subset \mathcal{O}$ for some orbit \mathcal{O} in \mathfrak{g}^*. From the Lemma it follows that \hat{T} is an invariant measure μ with $\text{supp} \mu \subset \overline{\mathcal{O}}$ for some orbit \mathcal{O}. Since all the orbits of a unipotent representation on a finite dimensional vector space are closed \cite[Part II, Chapter 1]{5}, $\mathcal{O} = \overline{\mathcal{O}}$ and the proof is complete.

\textbf{Acknowledgements.} I am grateful to Fred Greenleaf and David Ragozin for informing me of errors in my original proof. This research was partially supported by a grant from the National Science Foundation.
References

Dr. L. P. Rothschild
School of Mathematics
Institute for Advanced Study
Princeton, New Jersey 08540
USA
Department of Mathematics
Columbia University
New York, N.Y. 10027
USA

(Received May 30, 1974)