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1. INTRODUCTION

We shall prove a necessary and sufficient condition for the
local solvability of some left invariant operators on a class of
2 ~-step nilpotent groups including the Heisenberg groups. Our
method involves the use of the Plancherel formula and the
interpretation of the inverse of an analytic matrix as a matrix of
distributions. Here we will say that a partial differential

operator I is locally solvable at X provided there is a

neighborhéod Ux

of Xo such that
0

(1.1) Lo=f

has a solution 0 ¢ CN(U ) forevery f e C: (Uxo) .

xo
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Let g be a 2-step nilpotent Lie algebra such that
g =g, +g, with [g,,9,] =g, and g, contained in the
center of g . Following [1_7] we shall say that ¢ 1is of
type H if for every non-zero linear functional n on g, and

basis Yl,"‘.Ypl of g;,
(1.2) det Bn=det'ﬂ([Yi»Yj])lsi,jspl;!o '

Let G be the simply connected Lie group corresponding to g
and Uu(g) the universal enveloping algebra, which we identify
with the set of all left invariant differential operators on G .
The dilations & defined by & =s+] and
5 8 5|91
65|g =8 +I, s>0, forma family of automorphisms which
2
extend to a family of dilations, again denoted 68 s on u(g) .
An element L e U(g) is homogeneous of degree d if
6S(L) = de . Any such L can be written in the form
(1.3) L= ) ¢
jal%a %o
where Y. candenoteany Y, Y, +-- Y, and the c¢ are
Ia 11 i 1 o
constants. We shall assume that L 1is "elliptic in the
generating directions”, i.e., that
a Py
(1.4) Z c, b , OZEe¢R " .
la|=
N
Let G Dbe the set of all irreducible unitary representations

Pas
of G. If # ¢« G weagaindenote by = the representation
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of U(g) on the space of c” vectors. For A e g* » the
linear dual of g, let ™ be the corresponding representation.

We may now state our main results.

TheoremI. Let L e UuU(g), g oftype H, be homogeneous
and satisfy (1.4) . Then the following are equivalent:

1) 1L is locally solvable.

i) Thereis noopenset UC g* such that nx(Lt) has a

non-trivial kernel (in 1%) forall A e U.

1) ker Lt n 12(@) = {0} .

Theorem II. If L e U(g), g oftype H with p, >1, is

homogeneous of degree 2 and satisfies (1.4), then ker L. and

ker Lt are trivial and thus L is locally solvable.

Remark 1. The implications i) implies iii) and iii) implies
ii) of Theorem 1 are contained in Corwin-Rothschild [3] .

Remark 2. Theorem ! was known for the Heisenberg group [6] .

Remark 3. Theorem 2 improves the result of Lévy-Bruhl [E] R
who showed that i) and ii) are equivalent when deg (L)=2 .
Results for other 2 -step groups with deg (L) = 2 had previous-
ly been obtained by the first author [22] .

The first example of an unsolvable linear differential

operator, given by H. Lewy [l4], may also be interpreted as
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a left invariant operator on the three dimensional Heisenberg
algebra, homogeneous of degree 1. A representation-theoretic
condition for hypoellipticity and local solvability for a related
class of operators on the Heisenberg group was given by Folland-
Stein [5] . Rockland [20] then proved that a homogeneous left
invariant operator 1 on the Heisenberg group is hypoelliptic if
and only if w(L) has trivial kernel for every irreducible,
nontrivial unitary representation = of G, and conjectured the
validity of the statement for all nilpotent Lie groups with dilations.
The general case was later proved by Helffer and Nourrigat [E] .
Rockland also conjectured that the existence of a right inverse
for w(L) would give local solvability. This was proved by the
first author [21] and Lion [15], independently, and generalized
by Corwin [2].

For operators on the Heisenﬁerg group which are elliptic in
the generating directions, a very detailed analysis was made by
Geller [6], who obtained as a side result the necessary and
sufficient conditions of Theorem l. (See also Greiner, Kohn
and Stein [7] .)

The most general results for local solvability on Lie groups
have been obtained for bi-invariant operators, not necessarily
homogeneous. The first result was proved by Rais [17] (see
also [24]), who used the method of division by analytic func~
tions as in Atiyah [l] and the Plancherel formula to prove

that bi~invariant differential operators on nilpotent T.ie groups are
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locally solvable. The general result for any Lie group was later

obtained by Duflo [3] » who again relied on the resolution on
singularities in [1] .

The present work is inspired by that of Ra.i's , In that we
make essential use of the division by analytic functions, and by
that of Levy-Bruhl [13], whose work on local solvability on groups
of type H emphasized the simplicity of dealing with solvability
in that case. In addition, our results extend some previously

obtained by the first author [22] for second order operators.

2. Harmonic analysison G .

We shall use some calculations given explicitly by
Méetivier in [16] . Recall that the Kirillov theory [12] ident-
fies, up to unitary equivalence, G with the orbits of g* ’
the linear dual of g, under the action of the co-adjoint
representationof G. If g isof type H, the infinite
dimensional representations of G may be parameterized by
g; - {0} . We introduce polar coordinates n= (p,w) in
g’; - {0} . Then there exists a local basis {xr’ } of g; with

(2.1) "I[Rio Sj] = Pai » "'I[Ri'Rj] = "I[Sl’sj] =0,
w

w
where R =X, if 1=p/2 and 8= Xy1p,/2) if js=p/2

and

w
2.2) | X, = Z‘,vﬁ (0) Y,
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with Yy j (w) analyticin « . Indeed, thisisa simple
application of the Gram-Schmidt orthogonalization process. Then

we may write locally (and use a partition of unity in §3)

(2.3) = b (w)X
|a|2=d ot I:

where the ba (w) are analytic.
A
Now for n = (p,w) we may define =« e G as
(P » w)

follows. Let Tj,***, Tp be a basis of g, (independent
2
of w), and define global coordinates on G (for fixed w) by

(r,s,t) <> exp(p-'l/2 r-R + pnl/2 seS + p-l t-T) ,

Pl/z P
for r,s in R and t in R~ , with r-R=erRj.

etc. Then put

2.4)

Tio,u) (2 8- DVEW = lltontser/245:U) gy

It follows that

_1/2 R V-
To,w) B = P 0uy, m (S =R by

and

T, TPy -

We shall also need the Plancherel formula on G . For this, we

define, for ¢ € C:; (),

- -1
2.5) e (9 L AT @) 99
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where dg 1s Haar measure (= Lebesgue measure) on G. Then

the Plancherel formula for G, in polar coordinates, is (see,

e.g. [16])

1/2 pz"l

)) P dw dp,

(2.6)  @(0) = coj(;fpz_ltr(w(mw)(q’)) (detB_ .
S

where S denotes the unit spherein R “, o isa

constant, and tr denotes trace. An easy calculation, given
in [16], shows that the distribution kernel K(u,v) of the

operator w (p,rw) (p) 1is given by
-1/2 A2,3. o udv
(2.7) K(u, v) = (det Bn(P.w)) (p* exp) (u-v, 5=, n{p, w))

where exp denotes the exponential map exp: g¢—~ G and

A, ,3 is the partial Fourier Transformin s and t. Finally,
we shall need the general fact that for any L ¢ U(g),

9 € Cg(G)

(2'8) ) (Lo) = ) (L)w ) (o) »

“(Paw v(Paw (Prw
which follows easily from (2.5).
The Laplacian in (tl, eee,t_ ) will be written
p Py
2 2 2
At= -21: T, , and R(P’@) (At)= P
For technical reasons involved in the proof of Theorem1,

we shall need to consider a more complicated operator.
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Lemma 2.1. Suppose that L satisfies (ii) of Theorem l.

Then the same is true of

M N
v= w Gy

for any positive integer N . Further, if L'

satisfies (i) of the theorem, so does L . Thus it suffices to

prove that (il) implies (i) for the operator L'.

Proof: Suppose w((L')¥)£=0, fel1’. Then

n(y YjZ)N #(LL") £ = 0, and we claim that also w(LL*)f= 0.
If so, then « (L*)f = 0 also since the kernel of « (LL*) is in
the Schwartz space 8§ [8], so that (ii) holds also for L' .

To prove that = ( LL*) f = 0, we show that

ffn(IL*) h(u)du=0 forall h in 8. Sinceany such
h can be written as w(z YjZ)Nh' with h in 8 [13], the result
follows. Finally, if L'=LL'' is locally solvable, it is clear
that L 1is also.

3. Main outlines of the proof.

In view of Lemma 2.1, we may replace L by LL"=
and from now on we shall assume that L is self-adjoint and

that U =L(LY )N .

The first key step in the proof of Theorem I is the following

Proposition, whose proof is given in section 4.
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Proposition 3.1. Fix wg - Ihen there exists a neighborhood,
p —I
U of w,in 8 and £>0 andforeach w in U an
wg — 0 I R — - W
Lz projection Pw with range in Dom ( "o, ) (L)) such that
»

i) The spectrum of «

(Lw) Pm(1-p ) © (e2)
ii) The rank of Pw is finite and constant in uw

0

1ii) v, = Image P, varies analytically with w e U, @
0

that is, there exists a basis {e’} of vV with
w

w

each e, strongly differentiable of all orders and

w 2 p]./2
w——(ei,w) analytic forall w in L“(R ), and

iv) v( 1,0) (L) : Vw - Vw is given by an analytic matrix

(Aij (0)) ) .

In those regions in w -space where 0 1is not in the

spectrum of "(1,w) (L), Pw is 0 and we may invert

(1, w) (L) boundedly in view of part 1) of the Proposition. Near
values of « where Pm is not trivial, we may still invert
"(l.w) (L) boundedly on ker Pm . Since ker (I- Pw) is
finite dimensional, we are reduced to inverting an analytic

matrix on a finite dimensional space. We do this by using the
method of Lojasiewicz for inverting analytic func-
tions as in [16]. By means of the Plancherel formula, these

pieces will sum to give the desired solution.

Next, we observe that it is sufficient to show the local
solvability of the problem
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(3.2) vo=2f , feCy(G)

where 2Z 1is a fixed, constant coefficient operator, since such
7 are known to be locally solvable (cf. [10]). To solve
(3.2), we shall construct a global distribution solution to the

problem
(3.3) L'o=26 ,

6§ the Dirac distribution. We shall put 2= Ar where k s
an integer which will be chosen later.

By the compactness of sz-l, we may choose a cover of
finitely many open sets of the form Uw whose existence is
asserted by Proposition 3.1 and chooseoa partition of unity,
{.pj(w)} , subordinate to { ij} .

By using (i), the inverse of M;)= “(l,w)(L)IIm(I-Pw)
is bounded, and so we may define the linear functional

o, 2 on C;’(G) by the formula
£ 4

e 2k-9-N -
9,200 = co [ fp na te((-P)) M,

(3.4) S 2 1
7 Pt

2.~N
M) DY) gy (@) et B )T T de dp

Then, since t*=T, for x e C;(G) ,

oy = ® 2k -l 2,-N
9,200 = ©¢ f _y (RN g, (1Y)

S
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—

p,-1 =
C3 oy @, 0 (a)p * (det B (p, 0y dw dp
® 2k 3 byl
= _ 2 *2
= cof fpz_lp E(I-E ), ) OOV (w) (et B F¥p 2 dudp.

S
We will show in the section 6 that each O'j 2 1s actually a
»
distribution.
Now we must invert Mw = n(l’w) (L)|Im Pw . According
to the proposition, it is the matrix A(w) which we must invert.
By hypothesis |A(w)| = det A(w) £ 0. When |A(w)] # 0 we have

A = |A()] B (w)
where B (w) is the cofactor matrix of A (w) , and hence is
analytic even at points where |A(w)|=0. The result of Lojasiewicz
on division by analytic functions (discussed in the next section)
allows us locally to construct a distribution X
on a neighborhood \' @, of wq
such that A(A(w)X(w))= [X(w)dw forall Xe C( v, )

We then define linear functionals Gf ] on C: (G) by
»

d
p ® 2k-% 3N
TGl = co fe T R, @ eg m WY -
(3.6) 1
- B(w)e®y,(w)) (det B z %2 4
WiCpwylelldet B ) P de

2, P/2
where the inner product (in ) isin L (R ) and this

definition is justified by the following
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Proposition 3.2. For k sufficiently large, the linear func-

tional defined by (3.6) exists; i.e., for ¢ ¢ C:(G) the

function

B:T) Tyerw) = (wg, @eys w, ) (DY) Blelyyleled)

(Prw

p,-1
belongs to Cm( S 2 ) foreach p >0 and

ZRE(pae)) € L0, «

In section 5 we shall prove Proposition 3.2 and show that
the linear functional given by (3.6) defines a distributionon G,
i.e., that for any compact K in G there exist CK and

N. suchthatforall ¢ ¢ cg°( K ,

K

o 2k-(d/2)4p,-1,, .
3.8) |[ e K0, (p,unap| = Cg sup |D%|.
0 IaISNK

Finally, we claim that when ¢ = L't » X e C:(G) R

£ty °° 2k w
oL = oo f [ P, y(0eghes) 2 byl «
2

“(3.9) S
2 p,-1
+(etB ))/ P2 dwdp .

Hence by summing over £ we obtain
—1

2k
Za (L X)—coff lp w (B v, )(x)qu(.,,))p .
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(3.10) 12

.dt -
(detB_ y  de dp

(P,w

To prove (3.9), one merely checks that

't v 2,-Ner— o
(7o, )T T, g0, i DY) Blw)ed)

(Prw

d/2

w w
|A“”‘ﬂpmﬁm?rez)'

From (3.5) and (3.10) and the Plancherel formula it is

clear that the distribution
2
(3.11) a=Zaj2+E o)
[ Y A
satisfies
L'o=26

where Z is the bi-invariant operator with e, ) (2) = ka .
»

4. Analytic families of differential operators.

We show in this section that the operator-valued function
w— "(l,m) (L) extends to a complex analytic family of unbounded
operators from L2 to itself » in the sense of Kato ([l], Ch.
VII, Sec. l.1), whose work follows that of Rellich [19] . This
will allow us to define the projections Pw introduced in the
previous section and thereby prove Proposition 3.1.

The Sobolev space H® » S a positive integer. is defined
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by

P, /2
B = {f e 1R Y ): x*DPf e 1° provided |al+|p| =s} .

]

Since "(p ) (L) 1is a linear combination of monomials x¥ DB
?

with |ea| +|B| =d, it maps g to 12

boundedly. On LZ ,» however, the operator is unbounded,
P, /2
though clearly closable when initially defined on CS° (R 1 ) .

We denote the closure again by =« ) (L) . Denoting the norm

(p,

S =) pl/z
in H® by | | s » We have the estimate, for v e CO(R )
(4.1 Ivlg = Clod (llwg, @Vl + Ivlig), verd .

This estimate is proved in [8] for « real but persists into the
complexes for |Im w| small by {2.3). Hence the domain of each
T, e) 212 s exactly 1. Thus {"(l,m)(L)} forms a
"holomorphic family of Type (A)" in the terminology of
[, v, §2.1].

Now we may define the v, . For this, we use the follow~

ing result, see e.g., [11, III, 6.4, Thm 6.17] .

Lemma 4.1. Let T be a self-adjoint operator with discrete

spectrum consisting entirely of eigenvalues, and let T’ be a

closed curve in € not meeting the spectrum of T . Then

P= -5 r(r-g)‘l dt

is the orthogonal projection onto the subspace spanned by the

eigenvectors corresponding to the eigenvalues of T enclosed by

Tr.
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In our context, T will be Tl‘(l w)(L) for certain values of

@w . Let 0 be an eigenvalue of "(1 © )(L) . Since the operators
>0

Tl'(l’w)(L) form a holomorphic family, we may choose a smooth
closed curve I which encloses 0 alone among points in the
spectrum of "(l,o;o)(L) and meets the spectrum of no "(l,w)(L)
for w close enough to Wy, SAY W € Uw . Let Vw denote

0
the image of the projection Pm where

1 -1
P, = 'm{,("a,w)ﬂ—)-&) dg .

Then "(l,w)(L) Pw is the restriction of rr(l,w)(L) to Vw .
The hypothesis (il) of Theorem I implies that ﬂ(l’w)(L) is an
invertible operator for most w . The properties i) through iv)
of Proposition 3.1 now follow from the properties of holomorphic
families [11, VII, §7.3, Theoreml1.7].

In view of the definition of Hd ,» it is elementary to show
that the injection of Hd into L2 is compactfor d=1. We

now prove

Proposition 4.2. For any real w, 11(1 w)(L) has discrete spec-

trum consisting entirely of eigenvalues with finite multiplicity.

Proof: Since Tl'(l u)(L) is self-adjoint, its spectrum is
2
non-negative and thus ker (“(l oa)(L) +y)=0 forany y >0,
»
Now condition (1.4) implies the estimate
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(4.2) Ivllg = ctlimy, oy @viig+ iy
py/2
forall v in CS"(R 1 ) (see [8]). From (4.2) then
Ivlig = oy tl(my, oy @ +vIvilg + lIvllp)
- for each fixed y , and hence, using Proposition 4.1,
Ivllg = ¢, (lmy, ;)@ +vIviig + lQ vy

for y fixedandall v in cg(Rpl/Z) , where Q denotes
the LZ projection onto ker (Tl’(l’w)(L) +y). If y>0,

Q =0 andthus (m; . (0)+ v)"! exists and is compact.

Now a standard well-known result (see, e.g., [11, II, 6.8,

Theorem 6.29}) implies Proposition 4.2.

5. Application of the method of the division of distributions.

To prove Proposition 3.2 we write

2)

Jptpsw)= o (n y

w
(prw) (g f

with f: independent of p, analyticin & , andin 12.2

together with its  -derivatives. Thus
(5.1) Ty(ps0)= P g% (p,0)
where, by (2.7),

(5.2) ¥ (p,)= [/ (¢°exp)'\2’3(u-v,-u—zﬂ.n(p.w))e;(u)tj(V)dudV-
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) -1
Lemma 5.1. gZ(P.w) is in c (R xS ) and for any

compact set K in G, k' and o there exist N=N

; K, k', &
and CzCN,k',a such that forall ¢ in CO(K)

(5.3) sup |Dag;(9.w)| = c(+le|*)¥ sup |D s, t?l -
w @ d=nN

% A3
Proof : Since ¢ € CO(G) s (p-exp) "’ €8 and hence

g:(p,w) =h,(v) is infinitely differentiable in w. But D

is a sum of vector fields (in the 8/ aqj) with coefficients in
p,-1
C°°(R+x S 2 ), homogeneous of degree 1 in p. Thus we

may differentiate under the integral sign in (5.2) arbitrarily often

in p,w which proves that gq;(P,w) is C® in p#0 and .
]

t @
(Prw) with

A
Since for any j, jD gz(p,m)—cD gz

|c] =1, we may assume k' > 0.

In applying D: to g‘;(p,w) in (5.2),  -derivatives
which fall on e;(u) and f;’(v) vield functions still in L2
together with their derivatives of any order:

o] ep@ll 2 =Cp
(5.4)

IDg £l ;=

in view of the form of f:(v) . The operator QY with kernel
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A
2,3 +

Ky, v,n(p,w)) = DY (poexp) 27 (u-v, % n(p, ) :

w

® » ’ = K, (u,v,n(p,w)) e(u) du
y &V (P L)) ipl/z L ven(e,o

is bounded in L2 with norm less than a constant times

(5.6) (sup [ IKY(usV.n(P:w)Hdu)l/ 2(sgp JIR vn(p ) av”?
(Young's inequality). Since Dw is homogeneous in p of
degree 1 and ¢ €8, (5.6) isbounded by (1+]|p[)lY!
times a Schwartz seminorm of ¢ . The support of ¢, however,
is contained in a fixed compact subset of G, and an application
of the Schwartz inequality in (5.2) yields (5.3). Thié proves
Lemma 5.1.

Finally, it is now easy to see that Uf,l is actually a

distribution, Since K is a distribution, for any k'

Ime.m))ls| sup |DZI(P;w)|

al =Ny
o -2k’
<Gy sup ID. s, ¢ el(l+]e])
| =Ny
and so for all ¢ ¢ C:(K),
2k=(d/2)+p,~1,
| p A(J(poolfl } , =Cp sup |D%] .
L'(R") lal =

~ 7K
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6. Proof that the oj , are distributions.

Following [21] we write

1 o
(6.1) %,2(0)= ¢ [ B(p)dp + o [ h(p)

We first bound the second integral on the right as follows. By

the Schwartz inequality, for any n,

o © 2(2k-(d/2)-N+p,-1-n) V2
(6.2) |f1 h(p)dplSC{{ p 27 4y x

U LA Iy 2
tr( (I- M' .
L AR OM, ) D0 A Tk PR )]
2
S
1/2
2 2n
ldet Bﬂ(P,w)I M‘J (w)l dew p dp}
The first factor on the right of (6.2) is finiteif n> 0. To
bound the second factor we use the generalized Schwartz
inequality, |tr (AB)|% = tr aA¥) tr (88%), and follow [21] .
Then

-1
- 2,-N 2
(6;3) o (@PIM, wy (Y)W (o)

%* %*
str(n,, @ (5, @) &@ B )

— |
' 2 -N
where Bw = (I-Pw)Mu “(l,w)(z:Yj ) .
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Lemma 6.1. tr (BwB:) = C, independentof w .

—-1
Proof : Since |l(1-p )M || 2 = C;, independentof w ,
and Y] is self-adjoint,

2
(6.4) tr (B, B )scl tr(m) (ZY ) ) .

Pl/z
The eigenvalues of LI (ZY) are )» = Z gj(Zdj+1):

o= (ul’ cee, apl /2) , each a j a non-negative integer

(see, e.g., [20] ), where &

i
elgenvalues of the matrix n([Y,, Yk]) » m=n{l,w) . Hence

>0 apd tigj are the

6.5 w((mg YN = Z I 172N s (0,720 ) e 72N,
o

/2
la| = ]? @y, since lxalazczlal for

C,= min |wj| . Now the Lemma follows from (6.4)

and (6.5), provided N is sufficiently large.

Now by (6.3) and Lemma 6.1, the second integral on the

.

right hand side of (6.2) is bounded by

(@) | det B

(prw "'I(P:w)l *

S
Lyl o7

n/2 ,2
ell®

(6.6) cfofpz_ltr(n(p’w,(w)n
dw dp

= c'lla;
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provided n is chosen to be even, the last inequality following

‘ n/2 n
A = .
from the Plancherel formula since (o, w)( t @)= p ™ p’w)(tp)

Hence

® 2
flh(p)dpscr'llA?/ of .

1
The estimate for f h(p) dp may be obtained similarly,
0
beginning with the estimate

1 1 _ _ 1/2
|f0 h(p) dp| sc{£ p2@k-(d/2)-N) 431/2

1 -1
— 2.~N 2
. {fo I (@-P M, (g O Tw (o)

2(p,-1) 1/2
2 2
- ldetB ) le(a)|%p dodp .

The second integral on the right may be bounded as before. For
the first, recall that N has been chosen independent of k ;
we may then choose k sufficiently large so that

2k~-(d/2)~-N =0, which guarantees the convergence of the first
integral. This completes the proof that each 04,2 is a
distribution. We remark that it is only for this result that it was

N
necessary toreplace L by L (Z sz) » In order to make use
of (6.5).
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7. Proof of Theorem II.

Given L= ), 3y zizj' , where {Zi} forms a basis of
8y with (a“) positive definite, there is a linear change of
basis 2, —-Y, for g, such that

2
(7.1) L= Y +1) o,
for some constants c;» where the T.'i form a basis of g, .
By direct calculation (see e.g. [13] or [.Zi] ) it can be shown
that the eigenvalues of L (L) are all of the form

Pl/z
(7-2) my(n) == Y py(2a#) = ) ¢y,

j=1
where a= (al, see, upl /2) » a non-negative integer, and
the pj , all positive, are +i times the eigenvalues of
Bﬂ(Yi,Yj) = n({Y ,Yj]). In light of Theorem I (which in this
case had been obtained previously by Lévy- Bruhl [E 1), it

suffices to show the following.

Proposition 7.1. For any constants cj, and any fixed o, if P, >1

p
ma(") does not vanish in any open set on the unit sphere in R 2,

Remark. Since the p 4 are all bounded away from zero on the
sphere, there are only finitely many « for which there exists

non-zero 7 with ma(q)=0.
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Proof of the Proposition: Suppose that there exist ¢ = (cj) s o
such that ma(w) is identically zero in an open neighborhood
p,-1
U of w in 8§ 2 . Let w; Dbe a point such that
W 0 1
cew > 0. Then m (w,) =-(c-w;) forall . Since
g1 1 p, =1
p, > 1, there exists a path vy(t) on § 2 connecting the
points wg and @) » i.e., vy(0)= wg and y(l) =0y .. Let
I bethesetofall t in (0,1] suchthatfor 0<s=t,
there exists o and ¢ such that ma(y(u)) =0 for
u ¢ [s-g,s] . Byhypothesis, I is non empty and bounded.
Let &6 denote the least upper bound for I. 5 cannot be equal
to 1, since "(1 Y(t) )(L) is invertible for t sufficiently close
to 1 (since (L) {is invertible). Now if 6< 1, con-
(]-swl)
sider the point Y(6) . From Proposition 3.1, applied at Y($),
det Ai j("’) is analytic near Y(6), and by the construction of 5,
det (AIj (Y(t)) =0 for 6&6- g <t< &6, for some g >0. But
then this determinant must vanish identically for
S=t=6+ € » for some g, > 0, contradicting the hypothesis

that & is the least upper bound for I .

We are grateful to the referee for many suggestions which

have lmproved the exposition, especially in the proof of the above

proposition.
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