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MAPPINGS OF REAL ALGEBRAIC HYPERSURFACES

M. S. BAOUENDI AND LINDA PREISS ROTHSCHILD

0. INTRODUCTION

A holomorphic function 4(Z) defined in a neighborhood of a point Z; € cV
is algebraic if there are polynomials qj(Z), j=0,...,k, not all identically

zero, such that ¢, (Z)h(Z )k +...+gy(Z) = 0. A holomorphic mapping is
algebraic if all its components are algebraic. A smooth real hypersurface M
in " is algebraic if it is contained in the zero set of a nontrivial real-valued
polynomial in Z and Z . We assume throughout this paper that N > 1.

In [W1], Webster proved the following celebrated result: If M and M' are
algebraic hypersurfaces in c” with nondegenerate Levi forms and if H isa
biholomorphism defined in an open neighborhood of M and mapping M into
M’ then H is algebraic. Previously, it had long been known that if M and
M’ are open subsets of spheres, then the components of H are in fact rational
functions (Poincaré [P], Tanaka [T]).

In this paper we go a step further and give a complete characterization of al-
gebraic hypersurfaces in ¢” such that any holomorphic mapping with nonvan-
ishing Jacobian determinant between two such hypersurfaces must be algebraic.
QOur main result is stated in Theorem 1 below.

By a germ at p, of a holomorphic vector field in c? , we shall mean a

complex vector field of the form ):’,v aj(z)ﬁ% » where the a;(Z) are germs at

p, of holomorphic functions. We say that a hypersurface M is holomorphically
degenerate at a point p; € M if there exists a nonzero germ of a holomorphic
vector field tangent to M in a neighborhood of p,. This terminology was
introduced by Stanton in [S).

Theorem 1. Let M be a connected algebraic hypersurface contained in c”, and
let py € M . If there is no point p, € M at which M is holomorphically degen-
erate, then every biholomorphism defined in a neighborhood of p, and mapping

M 1o another algebraic hypersurface M’ cV is algebraic. Conversely, if M
is holomorphically degenerate at some point p,, then M is holomorphically
degenerate at every point, and there exists a nonalgebraic biholomorphism in a
neighborhood of p, in cV fixing p, and mapping M into itself.
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In C? every hypersurface which has everywhere degenerate Levi form is also
holomorphically degenerate at every point (see Remark 6.1). It is important
to note here that in higher dimensions there exist algebraic hypersurfaces with
everywhere degenerate Levi form, but which are not holomorphically degenerate
at any point. We give here an example of such a hypersurface due to Freeman
[Fr]. Welet M c €’ given by X} + X; + X =0 with Z =(Z,, Z,, Z,) and
X, =RZ,, X #0. The Levi form of M has a zero eigenvalue at every point,
but there is no holomorphic vector field tangent to M in a neighborhood of
any point. (See [S] and Remark 6.3.)

The following is an easy corollary of Theorem 1 and Theorem 3 of [BR3].

Corollary. Let M and M’ be two algebraic hypersurfaces in CV and H a
holomorphic mapping defined in a neighborhood of M in C¥ with H(M ye M.
Assume M is not holomorphically degenerate at any point. Then H is algebraic
if either one of the following conditions holds.

(1) The Jacobian determinant of H does not vanish identically.

(i) M' does not contain any nontrivial complex variety.

We shall connect the notion of holomorphic nondegeneracy to the condition
of essential finiteness of a hypersurface at a point. As in [BJT] we say that
a real analytic hypersurface M given by p(Z, Z) = 0 near p, is essentially
finite at p, if there is no Z # p, close to p, satisfying p(Z, {) = 0 for all

¢ near 2° with P(py, £) =0. (See §1 for more details.) The following shows
the relationship between essential finiteness and holomorphic degeneracy.

Theorem 2. Let M be a connected real analytic hypersurface in C” . Then there
exists py € M such that M is essentially finite at p, if and only if M is not
holomorphically degenerate at any point in M .

Note that if M is a real analytic, connected hypersurface and the set of
its essentially finite points is not empty, then it is proved in [BR2] that M is
essentially finite at every point except those in a real proper subanalytic subset
of M . Hence, by Theorem 2, M is generically essentially finite if and only if
M is not holomorphically degenerate at any point. (Note that in [S] Stanton
proved that if M is essentially finite at p,, then A is not holomorphically
degenerate at p,; our Theorem 2 includes this result.)

The first statement in Theorem | is an immediate consequence of the follow-
ing.

Proposition 0.1. Let M and M' be two algebraic hypersurfaces in c¥ with M
essentially finite at p,. If H is a biholomorphism defined in a neighborhood of

py in CV mapping M into M', then H is algebraic.

It should be mentioned here that Webster’s result [W1] mentioned above has
been extended in some cases to nondegenerate hypersurfaces of different dimen-
sions (see e.g. Webster [W2], Forstneri¢ {Fo], Huang [H] and their references).
See also Bedford-Bell [BB] for other results related to this work.

The paper is organized as follows. In §1 we give some notation and prove
some preliminary results on algebraic holomorphic functions. Sections 2 and
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3 are devoted to the proof of Proposition 0.1. Some of the techniques in §2
are adapted from those used in [BJT] and [BR1] in studying extendibility of
CR mappings. In §4 we give most of the ingredients necessary for the proof
of Theorem 2. In §5 we study the flow of germs of holomorphic vector fields
tangent to M and show the existence of a nonalgebraic map at holomorphically
degenerate points. In the last section we give first the proof of Theorem 2 and
then that of Theorem 1 and its corollary. We conclude with some remarks and
examples.

Results of this paper will be used to prove holomorphic extendibility of CR
mappings between algebraic hypersurfaces in a forthcoming joint paper of the
authors and X. Huang. Some of the theorems of the present paper can be
extended to holomorphic mappings of real manifolds in C” of codimension
higher than one. This work is in preparation and will appear elsewhere.

We are indebted to X. Huang for many fruitful discussions. We are also
grateful to M. Artin and C. Huneke for their help in the proof of Lemma 1.11.

|. PRELIMINARIES. ALGEBRAIC HOLOMORPHIC FUNCTIONS

Let M c CV be a real analytic hypersurface, i.e. for every p, € M there
exists a real-valued, real analytic function p defined near P, such that M is
given by p(Z, Z) = 0 near p, with dp # 0. It will be convenient to write
N = n+ 1. Recall that by the use of the implicit function theorem (see [CM],
[BJT)) we can find holomorphic coordinates (z, w), z € C", w € C, vanishing
at p, such that near p,, M is given by

(L.1) w=0(z, z, ),

where Q(z, {, 1) is holomorphic in a neighborhood of 0 in C***' and satisfies
(1.2) Q(z,0,1)=0(0,¢. )=

Note that (1.1) is equivalent to

(1.1") w=0(z, z, w).

It follows from the reality of p and (1.1) that the following identity holds for
all (z,¢, w)eC™"' near the origin:

(1.3) 0(z,7,0(, z, w)) =w.

Coordinates (z, w) satisfying the above properties are called normal coordi-
nates for M at p,.

We associate to M the complex hypersurface .# in c locally defined
near (p,, p,) by

(1.4) A ={Z,0):p(Z,0)=0},

where p(Z, Z) is the defining function for M near P, as above. We define
the germ of an analytic subset %p., cc® through p, by

(1.5) Wpo ={Z: p(Z, {) =0 for all { near p, with p(p,, {) = 0}.
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Note in fact that ‘7 C M. Then M is called essentially finite at p, if 7
{p,} - In particular, 1f (z, w) are normal coordinates, then

(1.6) Z5=1{(z,0):0(,,2z,0)=0forall {eC").

The manifold .# of (1.4) has been extensively used since the work of Segre,
and analytic subsets similar to (1.5) have previously appeared in the work of
Webster [W1], Diederich-Webster [DW], Diederich-Fornaess [DF] and others.

As in [BR1], we observe that by the Riickert Nullstellensatz (see e.g. [GR]),
the condition that M is essentially finite at 0 can be formulated more alge-
braically. We write

(1.7) 0. 2,00=)_0Q,(2)¢

Let .# be the ideal generated in C{z}, the ring of convergent power series in
n variables, by all the Q (z). Then M is essentially finite at 0 if and only
if 7 is of finite codimension in C{z}, ie. C{z}/F is a finite-dimensional
vector space over C.

We denote by %/, the subring of C{Z} consisting of all convergent series
which are algebraic functions. We shall use the following elementary facts about
germs of algebraic holomorphic functions.

Lemma 1.8. (i) (Weierstrass Preparation Theorem for algebraic holomorphic
Junctions.) Let f, g € &, and assume a,{l J(0) #0 with J minimal. Then

J-1 )
(1.9) 8(2)=49(2)f(2)+)_a,(Z2")2Z]
Jj=0
with g(Z) € oy, a(Z') e ¥,_,, a)(0)=0, Z' =(Z,, ... , Z). In particu-
lar, [ € %), can be written umquely in the form
J-1 .
(1.10) [Zy=U2Z)zZ] +Y_b,2")2}),
j=0

with U € &, U(0) #0, and b; € ¥y_, with b;(0) =
(ii) (Newton's theorem for algebraic holomorphic functions.) Let

J-1 )
PZ,X)=x"+) c(z2)X’

j=0
with c;€Hy, c(0)=0,and K(u,Z) e ;. Assume that u— K(u, Z) is
a symmetric function in (u,, ... ,u,). If p,(Z), oo » Py(Z) are the roots of

P(Z,X)=0, then K(p)(Z),...,p,(2),2Z) isin %),.

(lll) (Transitivity property for algebrazc holomorphic funcuons ) Let R(Z, X)
=y im04; (Z)X?, with d, (Z)e )y, d, #0. If f € C{Z} satisfies the equation
R(Z, f(Z))_O then fe.sﬂ
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(iv) (Composition of algebraic functions.) If f € &7, g € &, ji=1,...,K,
and g(0)=0, then f(8,(Z), ..., g(Z)) € &).

The proof of Lemma 1.8 uses standard arguments. See e.g. [BM]. In partic-
ular, it follows from Lemma 1.8(i) that &/, is a Noetherian ring.

We shall also need a version of the Ruckert Nullstellensatz for &/, . The idea
of the proof of the following lemma was suggested to us by M. Amn

Lemma 1.11. Let f,,..., f, € #,,, with f(O O,for j=1,...,K. Sup-
pose that the germ of the common zeros of the S is {0} If & s lhe ideal in
&, generated by the f then %,|.% isa ﬁmle—dzmenszonal vector space over
C. Equivalently, there exzsts a positive integer p and b € W)y so that

(1.12) z,f_z W ZVHZ), k=1,...,N.

Proof. Under the assumpuons of the lemma, by the Riickert Nullstellensatz for
analytic functions (see e.g. [GR]), one can find holomorphic functions bjk(Z )
so that (1.12) is satisfied. We must show that we can choose these functions
(which are not uniquely determined) to be holomorphic algebraic. Since f
is algebraic, f . satisfies a polynomial equation (with polynomial coeﬂicwnts)
P(Z, f (Z)) = 0. We consider the system of equations in the unknowns X
and Y:

K
(1.13) ZZ -3 Y, X;=0, P(Z,X)=0, k=1,...,N, i=1,...,K.
Jj=1

By the above, the systemn (1.13) has a convergent power series solution: X; =
f(Z), Y, = k(Z ). Since the system has polynomial coefficients, by an ap—
proxlmatlon theorem due to Artin [A2] (see also [DL]), there is an algebralc
formal power series solution £(Z), ¥(Z), which approximates the given so-
lution up to any given finite order ¢. Hence the Y. k(Z ) satisfy polynomial
equations R Jk(Z k(Z )) = 0. We consider now a new system of polynomial
equations consisting of those in (1.13) together with

Ry(Z,Y,)=0, j=1,...,K, k=1,...,N.
Jjk

By another approximation theorem of Artin [A1], there exists a convergent
solution X(Z), ¥(Z), which agrees with £ (Z) and Y(Z) uptoorder c. If c
is chosen sufficiently large (so that two holomorphic solutions of P, (2, X; ;)=
which agree up to order ¢ must be equal), then X, (Z) = f(Z), the Y k(Z )
are holomorphic algebraic, and we may take them for b +(Z) in (1. 12) This
completes the proof of the lemma. O

Remark 1.14. Note that if the hypersurface M is algebraic, then the function
Q in (1.1), as well as the functions @, in (1.7), are holomorphic algebraic.
Indeed, Q is obtained by the use of the implicit function theorem, so that we
may apply (1.10) with J =1, the Q_ are obtained by taking derivatives.
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2. PrROOF OF ProrosITION 0.1. PART |

In this section we shall begin the proof of Proposition 0.1, which will be
completed in §3. Assume M, M', po and H are as in the assumptions of
Proposition 0.1. We choose normal coordmates (z,w) for M, vanishing at
P, » and normal coordinates (z', w') for M’ vanishing at H(p,) asin §1. We
write the mapping H = (f, g) with z' = f(z, w) and v’ = g(z, w). We
assume that M is given by (1.1) and M’ is given by w' = Q'(Z’, 2, »').
Since H(M) c M', we have for (z, w) € M in a neighborhood of 0,

g(ztw)=Q,(f(2’m)rf(sz)' g(z,w)).

Since the manifold .# introduced in §1 (see (1.4)) is given by 7= Q({, z, w)

for (z,{,w, 1) € c*¥, and a similar equation for .#’, it follows from the
above that we have for (z, w,{, 1) € .#

(2.1) g, =0, ), f(z,w), g(z, w)).

We now introduce the following holomorphic vector fields which span the tan-
gent space to .7 :

8 .

(2.2) 3;:3—(;, + 0, (C z, w) j=1,...,n,
(2.3) .s>j=aizj+-g (z,¢ r) j=1,...n,
(2.4) zf_—+Q,,,(C,z w)a

For a multi-index a = (o, ... , @,) € Z] we shall write & =" ... Z™.
(Note that the .?i commute with each other) By Remark 1.14, since M and

M’ are algebralc, the functions Q and Q' are holomorphic algebraic.

Proposition 2.5. There exists a finite set S of multi-indices in Z: such that for
each j, 1 < j < n, there exist a positive integer N; and algebraic functions

Jk(up,v) 0<k<N v 1€p<n, B,yes, holomorphtcnear “po
Z'7(0) and v2 =0, such that for (z,w, {, ) € A the following holds:
P [

N,-1
26) £z, 0+ Y a7, Loz, w)=0, j=1,..,n,
k=0

where £, %P g are evaluated at ({, 7).
Proof of Proposition 2.5. We may write the defining equation of .#" in the form
(2.7) =0, 7, w) =0, 7, 0+w'P(, I, v,

where P’ is a holomorphic algebraic function in a neighborhood of 0 in
In what follows we write f for f(z, w), f for f({, 1), with (z,w,, 7)

C2n+l .
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assumed to be in .# . We also use similar notation for g and 2. By (2.1) and
(2.7) we have

(2.8) g=0.£,0)=00.r.0+gP(f, 1, g
As in (1.7) we write
(2.9) 0., 0= 0"

Since M’ is essentially finite at 0 (because M is), by the Noetherian Theorem
there exists ¢ > 0 such that {Q_ (') : la} < ¢} have no common zeros, other
than O itself, near 0. For every multi-index f with |8] < ¢ we define rﬂ(z)
by

(2.10) rg(z') =3 0L 10 = Y 0L’ 710

laj<t

Note that the second equality holds since f(0) = 0 and hence [#* SN0 =0
for |a| > |8].
We shall use the following to calculate [.?ﬂ 70).

Lemma 2.11. For any muln index B, and any germ of holomorphic function
Jiz,w,{, 1) at 0 in C¥, we have

(2.12) (37 c)”J(O) =2 j(0).

Proof. The lemma follows immediately from the form of the .? given by (2.2)
and from the normality of the coordinates as in (1.2). O

From Lemma 2.11 we have r,(z') = &, 0/ (z")[(%)’ /°)(0). Since 2£(0) =
0 (which follows from (2.1) and the normality of the coordinates), and H is
a biholomorphism at 0, it follows that the Jacobian matrix —-[ is invertible at
0. From these we easily obtain the following.

Lemma 2.13. The linear span over C of the convergent power series, Q. (z .,
la| £ €, is the same as that of the rg (), 18| < ¢, where rﬂ(z) is defined by
(2.10).

Using the Nullstellensatz (Lemma 1.11), there exists s such that for p =

l,...,n, z is in the ideal generated by the Qn(4 , la]l £ £, in the ring &7, .
That is,
(2.14) =Y ¢, (z)Q p=1,...,n,

|} <t
with ¢, (z) in &/, . Hence by Lemma 2.13 we have
s
:;, = Z bp,p(z')rﬂ(z')
181t

=D by (2 )ZQ NP N0), p=1,...,n

1B1<t

(2.15)
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Note that while the ¢, ,(z') in (2.14) depend only on M’ (and are independent
of M and H), the bﬁlp(z') in (2.15) depend on M’ and also on the constants
8°f(0), |a| < £. More precisely, the bﬂ, Jr,(z") are linear combinations of the
Cg, p(z') with constant coefficients depending only on the 38°f(0), |a| < €.

(Note that the Q, are algebraic holomorphic.) Substituting f for z' in (2.15),
we obtain

(2.16) =Y b, p(nZQ(n.?”j'(O), p=1,...,n

181t
We now apply .# 10 (2.8) and use (2.9) to obtain

(2.17) L= 0NL’ "+ L P, 1. 8).

Rewriting (2.1) in the form g = Q'(/, /, 2) and substituting for g in (2.17)
we have

218) L= 0L +Q. 7. 0L P, 1. QU T, ).

By taking the product of (2.18) with bﬂ, p( /) and summing over |B] £ £ we
obtain

3 Y b, ,NQNL T

1BI1st «a
=Y b, , N 2-Q . F. 0L P T QUL S o
181<¢t
Using (2.16) and (2.19), we have
5= by NQNEZ 70 -2 1)

18ISt a
+ 3 by NP2 -Q U T 0L P T QUL S )
18i1<¢

Let u =77 f and v’ = 7z, considered as independent variables, for
1<p < n, and y € S, where S consists of all multi-indices y € Z thh
lyl<e. Welet w) o=2"7(0) and vg = Z"2(0). (Note that .S”'g((l)
by the normalny of the coordmates and (2.1).)

Since Q'(z'. 0, 0) = 0, we may rewrite (2.20) in the form

(2.21) L+ K(f,u,v)=0, 1<p<n,

where K, (z', u, v) is algebraic holomorphic in its arguments, el u=
(u:) , v = (v”) as above and

(2.19)

(2.20)

(2.22) K,(z', 1y, 9) =0,

with u, = (up 0)» Yy = (v ). The rest of the proof of Proposition 2.5 will be
completed by the following.



REAL ALGEBRAIC HYPERSURFACES 10035

Lemma 2.23. Let w; € C', and K,(Z,w), p=1,...,n, be holomorphic
algebraic functions in a neighborhood of (0, w,) € C"*" satisfying K(Z, wy) =
0, p=1,..., n. Then given positive integers N, ... , N, there exist positive
integers N . ... , N, and holomorphic algebraic functions djp(w) defined near
wyfor 1<p<n, 0<j< N; -1, with d; (wy) = 0, such that if (Z, w) is
near (0, w,) and satisfies the system of equations

(2.24) Z)"+K,(Z,w)=0, 1<p<n,

then (Z , w) also satisfies the system

N =1
N. P .
(2.25) Z,+ ). d,(@Z =0, p=1,...,n
j=0

Proof. We reason by induction on n. For n = 1, we obtain (2.25) with N,' =
N, by applying the Weierstrass Preparation Theorem (see Lemma 1.8(i)) to
(2.24). We shall now show how to reduce the case of n tothatof n—1.

We use (2.24) with p = 1 and apply equality (1.10). Hence there exist
algebraic holomorphic functions cj(Z ser s 2y, ), j=0,..., N, -1, with
cj(Z sy s Z,, W) =0 so that (2.24) (with p = 1) is equivalent to

Ny-1 ‘
(2.26) Zh+ Y ¢(2,,.... 2, 0)Z! =0
s

Let pj(Z seeen 2y, w), j=1,..., N, be the roots (counted with multi-
plicity) in Z, of the polynomial (2.26). Then replace Z, by PiJj=1...,N,

in (2.24) with p =2, ... , n. Taking products over j we obtain
2.27)
NI
[Nz +k,(0,(2,.... . 2,,0),2,,...,2,,0)1=0, p=2,...,n

j=1

Since the left-hand side of (2.27) is a symmetric algebraic holomorphic func-
tionof p,, ..., Py, by Lemma 1.8(ii) it is an algebraic holomorphic function
of the elementary symmetric functions of the p_, i.c., of the coefficients ¢ in
{(2.26). Therefore we may rewrite (2.27) in the f!orm

(2.28) H(Z,,...,2Z,,0)=0, p=2,...,n,

where Hp is holomorphic algebraic in its arguments and Hp(Z yeen s Zyy W)

= Z:’ oM by the hypothesis on Kp . Therefore, (2.28) is a system of the form
(2.24) with n replaced by n — 1 and N, by Nle . By induction, we obtain
(2.25) for p=2,..., n. It remains only to show that (2.25) holds for p= 1.
For this, we start with (2.26) and replace each Z i J= 2,...,n,byoneof the
roots (counted with multiplicity) of (2.25), p = 2, ..., n. Taking a product,
similar to (2.27), over all possible expressions so obtained and again using sym-
metry and Lemma 1.8(ii), we obtain an equation of the form H,(Z,, w) =0,
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where H, is holomorphic and H|(Z,, wy) = Z, ¥ for some integer N;. Ap-
plying once more the Weierstrass Preparatlon Theorem (Lemma 1. 8(1)) yields
(2.25) with p=1. O

Remark 2.29. An inspection of the proof of Proposition 2.5 shows that the
functions a;, in (2.6) depend only on M’ and on the finite number of constants

3°f(0), a € S, where S is as in the statement of the proposition.

3. END OF THE PROOF OF PROPOSITION 0.1

In this section we complete the proof of Proposition 0.1. We assume through-
out this section that (z, w) and (z', w') are normal coordinates for M and
M’ respectively. We write H = (f, g) as in §2, and shall make use of Propo-
sition 2.5.

We begin with the following.

Lemma 3.1. Under the assumptions of Theorem 1, for every integer q the map-
ping z — %H (z, 0) is holomorphic algebraic in a neighborhood of 0 in C".
Proof. We begin with the polynomial identities (2.6) of Proposition 2.5. We
note first that for z € C" close to 0, the point (z,w,{,t)=(z,0,0,0) is
in 4, since Q(z, 0, 0) = 0. Since the coefficients of .9’; given by (2.2) are
algebraic holomorphic, for any holomorphic function J({, ), the functions
(z,w) - (LI, r))|(=(,.,_=0 are algebraic holomorphic. Evaluating (2.6) at
(z,0,0,0), we have

N-1
(32 £z, 0+ Y 4, (L T )lco.ec0 (27 B)io s} (2, 0) =
k=0

Since the a i are algebraic holomorphic, and by the above comments the func-
tions (z, w) — &7 ]'|;_ 0.1=0 and (z, w) — PP g“,lc ~0,1=0 are algebraic holo-

morphic, it follows by Lemma 1.8(iv) that the coefficients of the f" (z,0) in
(3.2) above are all algebraic holomorphic. Hence by (3.2) each z — f (z,0)
satisfies a monic polynomial with algebraic holomorphic coefficients. By bemma
1.8(ii1), we may conclude that each f (z, 0) is algebraic. This proves the lemma
for g =0, since g(z, 0) =0, by (2. 1) and the normality of the coordinates.

In order to prove the lemma for ¢ > 0, we shall need the following algebraic
result.

Lemma 3.3. Let &, {w} be the ring of germs of holomorphic functions
2 a, (z)w’ with coefficients a, (z) in 5, . Then any element of C{z, w} which

is algebralc over & {w} is already in .M " {w}. Thatis, if h(z, w) € C{z, w}
satisfies a nontrzwal polynomial equation of the form

K )
(3.4) ch(z, w)h’(z, w)=0, ¢z, w) e, {w},
=0

then h(z, w) € & {w}.
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Proof of Lemma 3.3. We may assume that the polynomial in (3.4) is irreducible
in & {w}[X]. Putting w =0 in (3.4), we have 2c(z , 0)h’(z,0)=0. Note
that Z le;(z, 0)| # 0, since otherwise w would be a factor of each coefficient
of the polynomlal given by (3.4), contradicting irreducibility. This proves that

h(z,0) is algebraic over %7, and hence algebraic over &/ {w} Therefore,
h(z, w) - h(z, 0) = wk(z w) is also algebraic over M{'w} i.e., there exist
b, (2, w) € & {w} not all 1dentlcally 0 such that

Nl

ij(z , w)wjk(z ,w) =0.

j=0
This proves k(z, w) is also algebraic over &, {w}, which implies k(z, 0) is al-
gebraic over &/, . Repeating the argument for A(z, w)-h(z, 0)— 'wz,%h(z , 0),
etc., we obtain ;’ k(z,0) is algebraic over & for k=0,1,.... This com-
pletes the proof of Lemma 3.3. O

We return to the proof of Lemma 3.1. We restrict to the submanifold of .#
glven by { =0 and 7 =w. The vector field ¥ given by (2.4) then becomes
2.3 7w » and the polynomial identity (2.6) of Proposition 2.5 becomes

N-1

35 £z, w)+ Z @, (L7 7,0, w), 20, w)ff(z, w) =0

which holds identically in z and w. (Note that the coefficients of the operators
&7 are algebraic holomorphic functions of z and w .) Hence the equation
(3.5) is of the form (3.4) with A(z, w) = f(z w). From Lemma 3.3, we

conclude f (z,w) e L {w} for j=1,... ,n In particular, the mappings

Z - m f}.(z, 0) are holomorphic algebralc for all k. To complete the proof

of Lemma 3.1, we must show the same is true for g(z, w). From (2.1) we
have '

(3.6) gz, w)=0Q'(f(z,w), f({, 1), 8¢, 7)),

for (z,w,{,7)e#.In(3.6) weset { =0, t=w), and differentiate in w.
We obtain

8,(2, w) = QL (f(z, w), J(0, w), 2(0, w)f,(z, w)
(3.7 +Qp(f(z,w), S0, w), 2(0, w)) 1.0, w)

+QL(f(z, w), J(0, w), 200, w))2,(0, w).

Taking w = 0 and using the fact that f(z, 0) and f,(z,0) are algebraic
Holomorphxc, as are the partial derivatives of Q', we then obtain that the map-
ping z + g, (z, 0) is also holomorphic algebralc Repeated differentiation of

(3.7) with respect to w yields similarly that the mappings z — 8, l(z 0) are
algebraic holomorphic, which completes the proof of Lemma 3.1.
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Proof of Proposition 0.1. We begin with (2.6) in which we take 7 = 0 and
substitute Q(z, ¢, 0) for w to obtain

Nl-l
(38)  £'(z,0(z, 8, 0+ Y a, (L], Lo o) Mz, 0z, L, 0) =0,
k=0

which holds as an identity in (z,{) € C* near 0. Note that after this
substitution the coefficients of the vector fields .Sj are then algebraic holo-

morphic in (z,{). Since M is essentially finite, and the coordinates are
taken to be normal, we conclude that the vector function Qc(z, {,0) does
not vanish identically, Hence we may assume there is (zo, Co) such that
Qtl(zo, Z°, 0) # 0. Note that (z°, CO) can be chosen arbitrarily close to 0
in €. Put w® = Q(2°, ¢°, 0). By the implicit function theorem (Lemma
1.8(i)), we can find an algebraic holomorphic function x(z, w) defined near
( 20, wo) and satisfying ;((z0 , w°) = C? , such that the following identity holds
for (z, w) near (z°, w°) in C™':

(3.9) Oz, x(z,w), &3, ... , {0, 0) = w.

We now take { = (x(z, w), Cg, cee s (3) in (3.8). After making this substitu-

tion, we consider that (z, w) are independent variables near (z0 , wo) . (Recall
that 7 has been set to O throughout this part of the proof.) We claim that after
this substitution the functions

(3.10) (z, w) @, (£7],, £’2)

are algebraic holomorphic. Indeed, as noted above, the coefficents of the .E”J
become algebraic holomorphic in (z, w), and the derivatives of f and g2
appearing in (3.10) are all taken at { = (x(z, w), Cg, ,Cg) and 7 = 0.
The claim then follows from Lemma 3.1, Lemma 1.8(iv), and the fact that
x(z, {) is algebraic.

From (3.8) and the observations above, we have shown that near (z°, wo)
each fj(z , w) satisfies a polynomial equation with coefficients which are alge-
braic holomorphic. Hence, by the transitivity of the property of being algebraic
(Lemma 1.8(iii)), each j; satisfies a polynomial relation, with polynomial co-
efficients, near (z°, wo). Since the f; are holomorphic in a neighborhood of
0, by analytic continuation, this relation holds in the entire connected set in
which the f; are defined. To show that g(z, w) is algebraic, it suffices to take
(3.6) with { = (x(z, w), C‘z’, vee s c,‘f) , T=0, and to use the result just proved
for f(z, w). This completes the proof of Proposition 0.1. O

4. SPACE OF MEROMORPHIC VECTOR FIELDS TANGENT TO M
AND ESSENTIAL FINITENESS

In this section we shall always assume that M is a real analytic hypersurface
in CN; we shall give most of the ingredients of the proof of Theorem 2 here.
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We shall need some preliminary results on holomorphic vector fields tangent to
M . We first introduce some notation. For Z° ¢ ¢V , we denote by &0 thering

of germs of holomorphic functions at Z° and by Z,o its quotient field, i.c.,

the field of germs of meromorphic functions at Z°. For Z° € M we denote by
#,0 the module over &0 of germs at Z 0 of holomorphic vector fields tangent
to M. Similarly, we let &,0 be the vector space over Z,0 consisting of all

germs at Z° of meromorphic vector fields tangent to A , i.e.,
(4.1

N
&0 ={X=Eaj(z)a—az'_ :a; € Zyand aX € #o for some a € G0, a #0}.
k=1 )

Note that since &0 C .57"5 » &0 is'a finite-dimensional vector space over %0 .
We observe that by definition (see §0) &0 is of positive dimension if and only

if M is holomorphically degenerate at z°.
The following proposition is one of the main results of this section.

Proposition 4.2, For p € M, let d(p) be the dimension of 8; as a vector space
over ﬁ’;, . Then the function p — d(p) is constant on any connected component

of M. In particular, if M is holomorphically degenerate at some point, it is
holomorphically degenerate at every point.

In order to prove Proposition 4.2, we shall need a precise local description
of holomorphic vector fields tangent to M . Fix Py € M and let (z, w) be
normal coordinates vanishing at p,. We assume M is given by (1.1). We shall
write

(4.3) Q(C’ z,w)= an(za w)Ca

for |z{, |{|, |lw] < §. We shall assume that & is chosen sufficiently small such
that the right-hand side of (4.3) is absolutely convergent. We let

(4.4) V={z,w)eC™ :|z|] <4, |w| <5},
so that M NV is given by (1.1). We have the following lemma.
Lemma 4.5. Let (z, w) be normal coordinates as above and (z°, wo) eEMNV,
where V is given by (4.4). If X isa germ at (2°, w®) of a holomorphic vector
field in C, then X is tangent to M if and only if

= ]
(4.6) X=j=zlaj(z, w)a—zj,

with a ; holomorphic in a neighborhood of (2°, wo). and

(4.7) Y az, wq, (2, w) =0,
Jj=1
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Jor all multi-indices o, and (z, w) in a neighborhood of (z0 , 'w°) , where the
q,, are given by (4.3).
Proof. 1t is easy to check that if X is of the form (4.6), where the a,

7 satisfy
(4.7), then X is tangent to M . Conversely, suppose X =3.;_. a,(z, w)

j=19;
b(z, w)L with a; and b holomorphic near (z°, w%, and assume X is
tangent to M . Then we have for (z, w, {, 7) near (zo, 0, z',w )

X(T—Q(C’ Z,’UJ))‘-'-"A(Z,'LU, g, T)[T—Q(C: Z,'ll))]

with 4 holomorphic. Hence we have
n
doaiz, w)Q, (£, 2, w) +b(z, w)0,({, z, w)
j=t

= —A(Z, w, {s T)[T—' Q(C) z, rw)]'
Taking 7= Q({, z, w) we obtain

(4.8) Za(z w)Q, (C,z w)+b(z, w)Q,(¢, z, w)_

Jj=1

for (z, w, {) near (z ,w?, 2 ). By analytic continuation, (4.8) holds also for
all { closeto 0. Taking { = 0 in (4.8), and using the identity 0(0, z, w) =

we obtain b(z, 'w) 0. The rest of the lemma follows by making use of the
expansion (4.3). O

If the g,(z, w) are given by equality (4.3), for each multi-index a we write
g, .(z, w) for the gradient with respect to z of the function ¢,(z, w). For

fixed (z0 , wo) € V, where V isgiven by (4.4), write r(z0 , wo) for the dimen-
sion of the span in C" of all the g, z(zo, w°) as a variesin Z . Let r be the

maximum of the r(z°, w®) for (z°, w°) € V. Since a nontrivial holomorphic
function cannot vanish in an open set of M, it follows that r(z° s w°) =r for
all (2%, w®) € VAM\Z, where X is a proper analytic subset of ¥ NM . Indeed
r is determined by the nonvanishing of the determinant of a submatrix of the
9.2+ . Notethat 0<r<n.
The proof of Proposition 4.2 will be an immediate consequence of the fol-
lowing lemma.

Lemma 4.9. Let V and r be as above. Then there exist vector fields, X,, ...,
X,_, . with holomorphic coefficients in V , tangent to MNV, such that for every
PEMNYV the Xpp» 1Sj<sn-r, the germs of the X; at p, form a basis of
&, over Z,.

Proof. Let &(V) be the ring of holomorphic functions in ¥ and FZ'(V) its
quotient field, i.e., the field of meromorphic functions in ¥ . We consider the
vector space Z (V)" over Z (V) and the r-dimensional subspace F spanned
by the ¢, (z,w) in FZ(V)". By Cramer's rule there exist n — r linearly
independent vectors in % (V)" whose dot product with all the elements of F



REAL ALGEBRAIC HYPERSURFACES 1011

is zero. Identifying these vectors with vector fields X i l1<j<n-r,inV
and multiplying by a common denominator we find » — r holomorphic vector
fields. In view of Lemma 4.5 and the fact that r(z, w) = r outside of a proper
analytic subset X, the X ; are tangent to M and give the desired result. O

Remark 4.10. If M is an algebraic hypersurface, then an inspection of the
proof of Lemma 4.9 shows that the local basis of holomorphic vector fields
X,,..., X,_, given by the lemma can be chosen to have algebraic holomorphic
coefficients, since the ¢ (z, w) given in (4.3) are algebraic holomorphic.

We will connect essential finiteness to the nonexistence of meromorphic tan-
gent vectors. We need to describe the set %po given by (1.4) in normal coordi-

nates.

Lemma 4.11. Let (z, w) be normal coordinates vanishing at p, and V given
by (4.4) as above. For (z°, wo) eMnYV we have

(4.12) %zo’wo) = {(z, wo) : z close to z°, q.(z, wo) = qa(zo, wo)for all o}.

Proof. Since .# is given by 1 - Q({, z, w) = 0, in view of (1.4) the germ

of W(Zo w®) consists of the set of points (z, w) near (z°, 'wo) satisfying 7 —

O, z, w) =0 forall (£, ) near (2°, @°) with t—Q(C, z°, w®) = 0. Using
(4.3) and analytic continuation in {, we obtain (4.12). O

The following is immediate from (4.12) and the inverse mapping theorem.

Lemma 4.13. Let V be given by (4.4) and let r(z, w) be defined as in the
comments preceding Lemma 4.9. If r(z°, w°) = n, with (z°, wo) eMnV,
then M is essentially finite at (z°, wo).

Remark 4.14. Let Z € M . The collection of the subspaces of C7,,M consist-
ing of X(Z) for X € #, need not form a bundle for N > 2. For instance, if
McCis given by SZ; = |Z, Zz|2 , then the vector field Z, a-az—‘ - Zw—%: spans
#, over @, , but vanishes at Z, = Z, = 0. This was noted in [S}.

5. FLow OF HOLOMORPHIC VECTOR FIELDS TANGENT TO M

In this section we study the flow of holomorphic vector fields tangent to a
real analytic hypersurface M in CV. Let py, € M and assume that X is a
nontrivial germ at p, of a holomorphic vector field tangent to M. To any
such X, there is a holomorphic one-parameter group of local biholomorphisms

in ¢V sending M into M . Such a group of automorphisms is defined by the
complex flow of X, i.e.,

(5.1) o(t, Z)=X(9(t, Z)), ¢(0,Z)=2Z.

Then ¢(¢, Z) is holomorphic for t € C, |t| <€, and Z € V', where V is an
open neighborhood of p, in c” . For fixed t,themap Z — ¢(z, Z) is a local
biholomorphism preserving M , and if X(p;) =0, then ¢(¢, py) = p, .

The following will be used in the proof of Theorem 2.
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Proposition 5.2. Let M be a real analytic hypersurface in cV and Py € M.
Assume there exists X, a germ at po, of a nontrivial holomorphic vector field
tangent to M. Then the germ at 0 of the holomorphic complex curve t +—
#(t, py), where ¢(t, p,) is the flow of X starting from p, given by (5.1), is
contained in 7 (as defined by (1.4)).

Proof. Let { € c” close to P, be such that p(p,, {) = 0. We must show
that the function ¢ — A(t) = p(¢(t, py), {) vanishes identically. If X =

E a(Z )5%- . then by the definition of the flow, we have
4

dh il
t)—Za(d)t p.,)) (¢(t Py) > €)-

Since X istangent to M , the latter must be a multiple of A(¢) = p(¢(¢, Po) {).
Since #(0) = 0, by the uniqueness of the solution of differential equations, we
conclude that 4(¢) = 0. This completes the proof of the proposition. O

Proposition 5.2 shows in particular that under the assumptions of the propo-
sition, if X(p,) # 0, then M is not essentially finite at p;. Indeed, in that
case the curve ¢ — ¢(¢, p,) is not constant and hence Wpo is nontrivial.

Proposition 5.3. Let M be an algebraic hypersurface in C" and X a nontrivial
"germ at p, € M of a holomorphic vector field tangent to M with algebraic
holomorphzc coefficients. Then there exists [ € @‘ and arbitrarily small t

such that if w(t,Z) istheflowof Y = fX, the mappmg z— y(t,Z) isa
nonalgebraic local biholomorphism mapping M into itself and fixing p, .
Proof. If X = ZJ_I J(Z) 9z and ¢(¢, Z) is its flow, then by standard argu-
ments using the local group property (see e.g. [N]), we have

(5.4) Za(Z)a (t,Z)=a,(¢(t,2Z)), k=1,...,N.

After multiplying X by a nontrivial algebraic holomorphic function vanishing
at p,, if necessary, we may assume X(p,) = 0. If for some arbitrarily small
t the map Z — ¢(¢, Z) is not algebraic, there is nothing to prove. Otherwise,
after renumbering if necessary, we assume a, # 0, and let f(Z) = e? and
Y = eZ1X . We denote by w(¢, Z) the holomorphic flow of Y. By (5.4) for
the vector field Y instead of X, and taking k =1 we have

N
(5.5) > e a(Z) (r zy=e""%a (y(t, 2)).

Hence we have

(5.6) eZmmt Z)Za(Z)a”"(z Z)=a,(y(t, 2)).
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We claim that for some ¢ arbitrarily small, the map z — w(t, Z) is not alge-
braic. To prove this claim, we reason by contradiction. If Z ~— (1, Z) were
algebraic for some fixed ¢, then since all the coefficients a, are algebraic, it

would follow from (5.6) that the function Z w— ¢4~ %“ %) s also algebraic.
Note that Z — Z, — y,(¢, Z) is algebraic and not constant (since a #0).
However, if A4(Z) is any nonconstant algebraic holomorphic function, then
the function Z — ¢*% cannot be algebraic. Hence we reach a contradiction,
which proves the claim. O

6. PROOFs OF THEOREMS | AND 2. REMARKS

Proof of Theorem 2. Assume that M is a connected real analytic hypersurface
in C" and that M is essentially finite at p,. We must show that M is not
holomorphically degenerate at any point. We reason by contradiction. Assume
that M is degenerate at some point. By Proposition 4.2, M is holomorphically
degenerate at every point. In particular, M is holomorphically degenerate at
py- Let X be the germ at p; of a nontrivial holomorphic vector field tangent to
M . By Proposition 5.2, M is not essentially finite at every point P, such that
X(p,) #0. If X(p,) # 0, we immediately reach a contradiction. If X (pg) =0,
there are points p, arbitrarily close to P, such that M is not essentially finite at
p, . We reach again a contradiction, since the property of being essentially finite
at p is open in M (see [BR2]). This completes the proof of one implication
of Theorem 2.

To prove the converse, assume now that M is not holomorphically degen-
erate at any point. We must show that there exists a point at which M is
essentially finite. Choose any Py € M and let (z, w) be normal coordinates
vanishing at p, and V given by (4.1). If r is the maximum rank in ¥V of
the d,. . given in (4.3), then by Lemma 4.9, we have r = n. Hence except on
a proper analytic set T C M NV, we have r(z, w) = n. On the other hand,
by Lemma 4.13, M is essentially finite at points where r(z, w) = n. This
completes the proof of Theorem 2. O

Proof of Theorem 1. Let M be a connected algebraic hypersurface contained in
c" . If there is no point p, € M at which M is holomorphically degenerate,
then by Theorem 2, M is essentially finite at some point Z°. The assumptions
of Proposition 0.1 are satisfied at Z°, and we conclude that H is algebraic near
Z° and hence everywhere in its domain of definition.

If M is holomorphically degenerate at some point p,, then M is holomor-
phically degenerate at every point by Proposition 4.2. Hence there is a nontrivial
germ at p, of a holomorphic vector field X tangent to M. By Remark 4.10,
we may assume that X has algebraic coefficients. Applying Proposition 5.3, we
infer the existence of a germ of a nonalgebraic local biholomorphism mapping
M into itself and fixing p,. This completes the proof of Theorem 1. O

Proof of the Corollary. Let M and M’ be two algebraic hypersurfaces in C",
and let H be a holomorphic mapping defined in a neighborhood of M in CV
with H(M)c M'. Assume M is not holomorphically degenerate at any point.
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If the Jacobian determinant J(Z) of H does not vanish identically, then the
restriction of J(Z) to any open set of M does not vanish identically. We can
then apply Theorem 1 at any such point to conclude that H is algebraic.

On the other hand, if J(Z) = 0 and M’ contains no nontrivial complex
analytic variety, we may use Theorem 3 of [BR3] to conclude that H is constant.
Indeed, it suffices to apply this theorem at a point of M which is essentially
finite. This completes the proof of the Corollary. O

Remark 6.1. Let M be a connected real analytic hypersurface in c” and d be
the integer given by Proposition 4.2. If d = n, then M is locally biholomor-
phically equivalent to SZ,, = 0. Indeed, by Lemma 4.9, we have r =0, i.c,,
g,(z, w)=0, |o| # 0, and gy(z, w) = w, where the ¢ (z, w) are given in
(4.3). In particular, a real analytic hypersurface in C? iseither holomorphically
degenerate and hence locally equivalent to 3Z, =0 or M is of finite type in
the sense of Kohn [K], except on a proper real analytic subset.

Remark 6.2. An algebraic holomorphic function 4(Z) is said to be of degree
m if it satisfies a polynomial equation P(Z, f(Z)) =0, where P(Z, X) is an
irreducible polynomial in N + 1 variables of total degree m. An inspection of
the proof of Proposition 0.1 shows that if A is as in the proposition, then the
degree of its components is bounded by a constant depending only on M, M’
and the points p, and H(p,). (See especially Remark 2.29.)

Remark 6.3. Freeman [Fr] showed that M C C*/{0} givenby X+ X;+X; =0
with Z = (2,, Z,, Z,) and X, = RZ, has everywherc degenerate Levi form,
but no local straightening. Stanton [S] showed that M is essentially finite at
some points. Hence, by Theorem 2, M is not holomorphically degenerate at
any point. It can also be checked directly that if X isagerm at p, € M of a
holomorphic vector field tangent to M, then X =0.
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