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Minimality and the Extension of Functions
from Generic Manifolds

M., S. BAOUENDI AND LINDA PREISS ROTHSCHILD

1. Introduction. Let M be a smooth submanifold of C° of codimension
[ given locally near m, € M by pj(Z,'Z) =0, 1< j</, with p; smooth,
real-valued, and dp,, ..., dp, linearly independent. If, in addition, the
complex differentials dp,, ..., 8p, are also linearly independent, then M

is called generic. (Here 8p, = X5, 55+ dZ, ) We write p=(p,,.... 7).
We denote by CTM the complexified tangent space of M. If m e M
we denote by 7, the space of antiholomorphic tangent vectors at m, i.e.,

14
(1.1) %:{Zaj%ECTmM, a;€Cy.
=t 192,

If M is generic then dim?%,, = N-/ is independent of m. We denote by 7
the associated subbundle of CTM . We shall refer to 7 as the CR subbundle
of M, and denote by L the smooth sections of 7. If & is a function or
distribution defined on M, then h is called CR if & is annihilated by all
the vector fields in L. Ifa C' function f on M is the boundary value
on M of a function holomorphic in some open set whose boundary contains
M , then, by continuity, /' must be a CR function. The converse does not
always hold; e.g., take M =R C C. We address here the question of finding
geometric conditions on a generic manifold M which guarantee that every
CR function extends holomorphically to some open set in C” .

We shall describe a class of open sets, called wedges, into which CR func-
tions will extend holomorphically under favorable conditions. Let M be a
generic submanifold of C?, mg, € M, and p a set of defining functions for
M near m, as above. If & is a small neighborhood of m, in C® and T
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an open convex cone in R’ \0, we put
(1.2) ¥ O.T={Zel:p(Z,Z)eT}.

The set defined by (1.2) is an open subset of C” whose boundary contains
MnN@& it is called a wedge of edge M in the direction T . Note that if M is
a hypersurface, i.e. / = 1, then a wedge of edge M is one of the two sides
of the hypersurface.

The extension problem may now be formulated precisely as follows. We
shall say that a generic manifold M is wedge extendable at m, if every CR
function defined in a neighborhood of m, in M extends holomorphically to
a wedge of edge M of the form (1.2). A complete characterization of wedge
extendability is known and is the subject of this paper.

We first give a brief history of this problem. The study of extendability
of CR functions defined on a hypersurface began with the important work
of Hans Lewy [23], in which he showed that all CR functions on a strictly
pseudoconvex hypersurface extend to the convex side. Subsequent progress
on extension of CR functions from hypersurfaces was made by a number
of mathematicians culminating in the work of Trépeau [28], who obtained
a necessary and sufficient condition: a hypersurface M satisfies the extend-
ability condition at a point m, as above if and only if there is no germ of
a complex analytic hypersurface contained in M and passing through .
In the case of a real analytic hypersurface, this result was first obtained by
Baouendi and Treves [10].

For higher codimension, i.e. / > 1, a number of sufficient conditions
for extendability were obtained by several mathematicians, in particular,
Hill and Taiani {20, 21], Ajrapetyan and Henkin [1), Henkin [19], Boggess
[13], Boggess and Polking [15), Boggess and Pitts [14], Baouendi, Chang, and
Treves [3], Baouendi, Rothschild, and Treves [8], and the authors [4]). See also
Taiani [27] for a survey of some of these results and for further references.

Recently, A. E. Tumanov [31] has given a sufficient condition for wedge
extendability of CR functions defined on a smooth generic manifold of any
codimension. The authors [7] have shown that Tumanov’s condition is also
necessary. We will now describe this condition.

A generic manifold M as above is called minimal at my, if there is no
germ of a smooth submanifold N properly contained in M and passing
through m,, such that all smooth sections L of the CR bundle 2 near m,
are tangent to N . Note that if such an N exists we must have

(1.3) 2dim 7 < dimp N < dimg M.
We can now state the characterization mentioned above.

THEOREM 1 [31, 7). A generic submanifold M in C° is wedge extendable
at my if and only if it is minimal at my,.

In [31] it is proved that under the condition of minimality for every neigh-
borhood U of m, in M, there is a fixed wedge #°(&,I') to which every
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CR function in U extends holomorphically. Also, note that it is shown in
[7] that if minimality fails then there is a smooth CR function which does
not extend to any wedge. (See §3.)

2. Sufficiency of minimality. In this section we shall briefly describe some
of the ideas involved in Tumanov's proof that minimality is sufficient for
wedge extendability. We refer to [31] for details.

We first describe the method of analytic discs, initiated by Bishop [11].
Suppose that M is a generic manifold in C? asin §1. Let D be the unit
disc in the complex plane, D = {{ € C, |{| < 1} and S = 8D the unit
circle. By an analytic disc attached to M of class C* we mean a mapping
Z: D — C” holomorphicin D, of class C* in D, and such that Z(S) c M.
The method of proof is based on the following well-known result.

PROPOSITION 2.1. If, for some fixed o > 0, there is a wedge %' (& ,T)
of the form (1.2) contained in \), Z(D), where Z ranges over all analytic
discs attached to M of class C®, then every CR function of class C Yon M
extends holomorphically to (@, T).

PROOF. It follows from the approximation theorem of [9] that every C !
CR function A on M is locally a limit in the C! norm of a sequence
of holomorphic polynomials in C?. After composition of these polynomials
with analytic discs attached to M and making use of the maximum principle,
we conclude that this sequence converges uniformly in |J, Z (D). Its limit
is the desired holomorphic extension of 4.

The main point of the proof of the sufficiency is to show that the assump-
tion of Proposition (2.1) holds if minimality is assumed.
In order to describe the construction of the analytic discs we set p = n+1

and introduce holomorphic coordinates (z, w)€C’, z=(z,,..., z,) €C"
and w = (w,, ..., w) ed, such that M is given by
(2.2) Imw = ¢(z, 2, s), s=Rew,

where ¢ is a smooth function valued in R , defined in a neighborhood of
0 in R and satisfying ¢(0) = 0 and d¢(0) = 0. An analytic disc of
class C° attached to M is then of the form Z({) = (z({), w({)), with
2:D—C" and w: D — C of class C* and holomorphic in D satisfying

(2.3) Imw() = ¢(2(0), 2(0), s(0)), (€S,

where s(£)) = Rew({).

Let & be the space of all vector functions z({) valued in C" of class C*
such that z(1) = 0. For 1 € D define z,({) = z({) — 2(2) for z€ &. We
look for analytic discs of the form Z,({) = (2,({), w,({)), where Rew,(4) =
0. It follows from (2.3) that 5,({) = Rew,({) satisfies the Bishop equation

(2.4) 5;(8) = =T(d(z;, 2;, (), (€S,
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where T, = T—P, T, with T the Hilbert transformon S and P, the Poisson
kernel evaluated at A. Recall that

2r
Tdlo)=5_ [ #()Im
(2.5)

I I2 i0
Po=— =e .
b= [ o0 ol ¢
For z € & we write ||z|| for the C* norm of z. If ||z|| is sufficiently
small, by contraction and the continuity of the Hilbert transform in C*(S),
for 0 < a < 1, (i.e. by using the implicit function theorem for Banach spaces
in C%), we conclude that equation (2.4) has a unique solution 5,({). Now
for 2 € D we define F,: & - R’ by
(2.6)
_ 1312 f2n
2 Jo IC ll

From here on we fix @, § < a < 1. For z € & with small norm we
define ¢(z) by

(2.7) $(Z) = ‘/ozx ¢(Z(€)IC z(il) S(C)) do C = e"o

where s is given by (2.4) with A = 1. The following, which is a crucial
observation in Tumanov’s work, can be proved by standard estimates.

LeMMA 2.8 [31). If ||z is sufficiently small, z € &, then for 0 < A < 1
we have

[ = e

2
2Bl + o1 - ),

From Lemma (2.8), Tumanov then establishes the following criterion for
wedge extendability.

F(z)=

PROPOSITION 2.9. If the Banach space derivative of ¢ at some point z, €
& isonto R, then M is wedge extendable at 0.

The rest of the proof of the sufficiency in Theorem 1 consists of showing
that if the derivative of ¢ is not surjective at any z € & with sufficiently
small norm, then M is not minimal at 0. This is contained in the following
statement. Let f: & — M begivenby f(z) = (z(-1), w(-1)), where Rew
satisfies the Bishop equation (2.4), with A = 1, and Imw is determined by
(2.3).

PROPOSITION 2.10. If the derivative of $ is not surjective at any z € &
with suﬂiczently small norm, then there exists z, € & of small norm (such

that ¢ at z, is of maximal rank) and a neighborhood % of z, in & , such
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that f(z,) =0 and f(%) is a smooth proper submanifold of M for which
all the sections of the CR bundle 7 are tangent.

REMARK 2.11. Using the representation of CR distributions in [9] (see
also [30]) one can also prove under the assumption of minimality, any CR
distribution on M is a boundary value of a holomorphic function in a wedge
of the form (1.2) with slow growth near M .

3. Necessity of minimality. Suppose that M is not minimal so that there
is a proper submanifold N of M to which all the sections of the CR bundle
7 are tangent. We shall call such an N a CR submanifold of M. The
proof of the necessity proceeds by first showing that there is a nonzero CR
distribution 7 supported on N. It is easy to see that 7 cannot be the
boundary value of a holomorphic function in any wedge with edge M (since
such a holomorphic function would have to vanish identically). From z it
is possible to construct, for any integer k, a nonextendable CR function of
class C*.

We first give some indications of the construction of the distribution .
A precise statement of the result is the following theorem.

THEOREM 2 (7}. Let M be a generic submanifold of C° which is not
minimal at my € M and N a CR submanifold of M containing m, with
dimg N < dimy M . Then there exists a CR distribution © defined in a neigh-
borhood U of my, in M with suppt=NnU.

We assume that m, = 0 and that M is given by (2.2). We parametrize M
by (z, 2, s) in a neighborhood of 0 in R>* . With this parametrization

we can choose a basis of CR vector fields Lj , j=1,...,n,of the form
a 8
(3.1) Li=a—+ Y, ay(z,2,5)75—,
4 02]. \Srl J as;

with a;,(0) =0.
Assume that N is given by pj(z, 2,8)=0,1<j<l,,where ,=1-1
and the differentials dp; are linearly independent. Since the L; are tangent

to N, we must have Ljpk =0 on N, and also Zij =0 on N, since the

p; are real-valued. Hence, by (3.1), g;’:kf-(O) = g—;’f(O) = (. We conclude that

) . . .
rank (t,,—’:,f(O))l <j<t, 1<kt = b - After a linear change of variables and using
the implicit function theorem, we can assume that N is given as a subset of
M by

(3.2) 31|+j='/’j(z: 2;31s---’s[|), 1<jgl, Wj(0)=de(0)=o-

Put t; =s,l+j—wj(z, z,s), j=1,...,1,, and take the coordinates on
M, (x,y,5,t)= (x,y,sl,...,s,l,tl,...,t,z). In these coordinates the
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L; become
!
a4 ! ad 8
(3.3) Li=a—+) Baac+ d. Hulears
i 8z £k s, S, Jkr'k gt
18rt,

where B, and p, are functions of (x,y,s, r). We introduce the vector
fields Lg , obtained from Lj by setting t =0:

0 0 9
(3.4) L =a—2j+§ﬁ,-k<x,y,s,0)ﬁ.

We look for a distribution solution 7 of the system of equations L jT= 0
of the form t =V (z, 2, 5)d(t), where o(t) =6(f,)®--- ®6(t,z) is the dirac

measure at the origin in R? and V is a smooth function nonvanishing at

0. Using the relation
i)

t, ——

kat,
where ¢, is the Kronecker symbol, we conclude that ¥ must satisfy the
equations

(3.5) LV- Y u.(z,2,97=0, 1<j<n.
1grgd,

o(t) = —e,,0(1),

Since V is nonvanishing, equation (3.5) is equivalent to

(3.6) LilLog¥)= 3 Hj,(z, 2,9).
1<rgh,

Therefore, it suffices to show that ZlS’S’; u?,,(z, 2, s) is in the range of
LY.

)It should be noted that a first-order system of equations of the form (3.6),
with the ,u?”(z , 2, 5) smooth functions, need not have a solution. Even in
the case of a single equation solvability can fail, as was first discovered by
Hans Lewy [23] in a similar context. However, in the case under considera-
tion the right-hand side of (3.6) may not be chosen arbitrarily. By an explicit

calculation it is shown in [7] that in fact (3.6) is always solvable. This proves
that the singular solution t of Theorem 2 exists.

ProPosITION 3.7. Under the assumptions of Theorem 2, for any k > 0
there is a CR function of class C* defined in a neighborhood of m, which
does not extend to any wedge with edge M near m,.

PrROOF. We can find ! vector fields D, satisfying, for 1 < g<n, 1 <
Jjyp <,

(3.8) [L,, D;]=0, [D;,D,)=0, Dys,+i¢,(z,2,5)=¢,
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where the ¢, are the components of ¢ in (2.2). In fact D; is of the form

17 8
(3.9) D = —+ a;
awi 1<Zk:<l ! B'w

(See [5] for this construction.)

By the representation of distributions annihilated by a system of complex
vector fields given in [10] (see also [30]), for any k there is a CR function
f € C* defined near m, such that = (T, <1 D; 5.

We reason by contradiction. Assume that f is the boundary value of a
holomorphic function H in a wedge #(¢,T"). It follows from (3.9) that
we have b( a” ) = D;(bH), where b denotes boundary value. We conclude

that
(2] - ((265)) )

8H
D f b ( ETrS )
It would then follow that t is the boundary value of a holomorphic function,
contradicting Theorem 2 and the remarks preceding it.

REeMARK. By using the Baire Category Theorem one can also show under
the assumption of Theorem 2, the existence of a smooth CR function which
does not extend to any wedge. (See [7] for details.)

4, Minimality and the sections of the CR bundle 7. In this section we
shall give two characterizations of the minimal CR submanifold N through
a point m, in a generic manifold M.

TueoreM 3 [7). If M is a generic manifold in C* and my € M there
is a unique germ N, of a CR submanifold contained in M, m, € N, of
minimal dimension. Also N, may be described as follows.

(i) For every sufficiently small neighborhood U of m, in M, there is a
neighborhood U’ C U such that NynU’ consists of all points m € U’ which
can be reached from my, by a finite sequence of integral curves contained in
U of sections Re 7" .

(i) For every sufficiently small neighborhood U of my in M, there is a
neighborhood U' c U such that Nyn U' is the union of sets of the form
Z(S), where Z is a continuous analytic disc attached to M with m, €
Z(S)cUnM.

The first characterization (i) and the uniqueness of N, in Theorem 3 may
be restated as a local property of a set of smooth real vector fields. Let
& ={X,,..., X,} be a set of real vector fields defined in a neighborhood
Q of apoint m, in R’. We shall say that 2 is minimal at my if there is
no germ of a proper submanifold N through m, such that all the X; are
tangent to N. The following is due to Sussman [26).
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THEOREM 4 [26]. For every sufficiently small neighborhood U of m, in
Q, there is a neighborhood U’ c U and a smooth manifold N c U', my €
N, such that the X , are all tangent to N at every point of N and for which
dim N is minimal with this property. In addition, N consists of all points
m € U’ which can be reached from my, by a finite sequence of integral curves
contained in U of vector fields in & . In particular, 2 is minimal at m, if
and only if every point in U’ can be reached by a sequence of integral curves
of the X ; contained in U.

To give the reader an idea of how Theorem 4 is proved, we shall consider
the case of two vector fields 2 = {X,, X,} in R’ and show that if 2 is
minimal at 0 then the last conclusion of the theorem holds, Since 2 is min-
imal, at least one of the vector fields, say X, , is nonvanishing at 0 (otherwise
{0} would be a submanifold to which both X; are tangent). Let I be the
integral curve of X, starting at 0, i.c. the image of ¢, — exp¢, X, -0. Since,
by minimality, X, cannot be tangent to I'" in any neighborhood of 0, there
exists ¢ , as small as desired, such that X, , isnot tangent to I" at exp t?X 0.
Then the mapping (¢, , t,) — 6(¢,, £,) = (exp —t?X,)-(exp 5L X;)-(exp¢, X,)-0
is of rank two at (t?, 0). By the minimality again (since the image of
this map is a two dimensional manifold X through 0), at least one of
the vector fields X f| is not tangent to this manifold in any neighborhood
of 0. Therefore, there exists (t: , t;) € Rz, as close to (t? , 0) as de-
sired, such that, say, X, is not tangent to X at 0(1: , t;). Finally, the map
(s 8y, t3) — (exp —t:Xl) . (exp—t;Xz) - (exp t?X,) -(exp 2, X,) - (exp —t?X,) .
(exp,X,)-(exp?, X,)-0 is of rank three at (1, , t;, 0), so that the image con-
tains a neighborhood of the origin. Then every point in that neighborhood
is connected to the origin by a sequence of at most seven integral curves of
the X, .

Thé general case can be proved by using an induction and repeating the
same argument.

For the second characterization of minimality, i.e. (ii) in Theorem 3, one
uses Proposition (2.8) to show that there is a CR submanifold of M through
m, contained in the union of sets of the form Z(bD), where Z: D — c
is continuous, holomorphic in D and satisfying my, € Z(bD) c Un M,
where U is a sufficiently small neighborhood of m, in M. We shall show
that the image of S = bD under all such holomorphic discs Z lies in the
minimal submanifold N,. Hence the proof of Theorem 3 is completed by
showing the following lemma.

LEMMA 4.1 [7]. Let M be a generic CR submanifold of C**' and N a
CR submanifold containing m,. Then there is a neighborhood U of my in

M such that for every Z: D — C™' with Z holomorphic, continuous in D
and satisfying my € Z(bD)c UnM, we have Z(bD)C N.
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The proof of Lemma (4.1) uses the local coordinates (z, 2, s, ¢) intro-
duced in §3 and a uniqueness argument for the solution of the Bishop equa-
tion of the form (2.4) with A=1.

The notion of minimality is a weaker condition than that of finite type in
the sense of Kohn [22] and Bloom and Graham [12]. A generic manifold M
is of finite type at m,, if the Lie algebra generated by the sections of the CR
bundle 2 and their complex conjugates span CTM in a neighborhood of
m,. Indeed, if m, is a point of finite type, and N is a CR submanifold
through m,, then since the sections of 77 are tangent to N so are all their
commutators, which implies that all tangent vectors to M are also tangent to
N,ie.thegermsof M and N are the same at m,,. It should be noted that if
M is real analytic, then the notion of minimality coincides with that of finite
type. Indeed, if M is not of finite type, then the Nagano leaf [25] passing
through m, would be a proper real analytic CR submanifold, contradicting
minimality. The following shows that if M is only smooth it can be minimal
without being of finite type.

EXAMPLE 4.2. Let M be the hypersurface in C? defined by

M={(z,w)eC2:Imw=¢(Im2)}.

where ¢ is a smooth function on the real line satisfying ¢(y) >0 for y > 0
and ¢(y) =0 for y < 0. Then M is minimal at the origin, since every
point can be reached by a sequence of integral curves of the sections of
Re?Z . However, M is not of finite type at 0, since the commutators of all
orders of L and Z vanish at that point. Here L is any section of 7.

- REMARK 4.3. If dimg N, = 2n, where N, is given by Theorem 3, and

dim? = n as in §2, then N, is a holomorphic submanifold of c™*! of
complex dimension n. In particular, if M is a hypersurface, ie. { =1,
then N, is a complex hypersurface. In this case the condition of minimality
coincides with the necessary and sufficient condition of Trépreau. Indeed,
with the holomorphic coordinates (z, w) of §2, by dimension we must have
that N, is given by an equation of the form w — f(z, 2) = 0, where f is
a smooth function in a neighborhood of 0 in R*. Since w — f(z, 2) is
annihilated on N, by the antiholomorphic vector fields tangent to M, we
conclude that % =0, ie. f is holomorphic.

REMARK 4.4 [7). If M is a real analytic generic manifold which is not
minimal at m,, and N a real analytic CR submanifold of A/, then there
is a holomorphic submanifold # in C™, such that N = M n.# with
dimg N = dim.# + n. In particular, the minimal CR submanifold through
my, is of this form. This is not the case if M is assumed only to be smooth
rather than real analytic, as shown by the following example.

EXAMPLE 4.5. Let M be the generic submanifold of C® of codimen-
sion 2 parametrized by (x,y,s,!) and given by {(z,w,,w,) : w, =
S+i |;:|2 ,» Wy =t+h(x,y,s)} where h is a smooth nonreal analytic function
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satisfying §2 = iz4%. Here N isgivenby {t =0} and L = & - iz£.
If N were the intersection of A with a complex hypersurface, there would
exist a holomorphic function % and holomorphic coordinates (z’, w,, w,)
such that h is the restriction of ¥ (z', w;, w;) to N, contradicting the
assumption that 2 is not real analytic.

5. Other results, remarks. We describe here some related results for struc-
tures more general than generic manifolds. Let Q be an open set in R?.
We shall say that Q is equipped with a hypoanalytic structure (see [3]) if

we are given locally p complex-valued smooth functions Z, ..., Z‘P with
linearly independent differentials. Therefore there are n = ¢ — p complex
vector fields L,, ..., L, linearly independent at each point and satisfying

LZ, = 0 forall j, k. We denote by 7 the bundle spanned by these vector
fields. Note that the image of Q by themap Z = (Z,,..., Zp) in C? need
not be a manifold. Indeed, consider the case

. 2 a . 0
(5.1) p=n=1, Z=x+iy", L-é-;—mya-.
The L in (5.1) is called the Mizohata operator in R?.

Marson [24] has defined a notion of wedge extendability for solutions of
the overdetermined system Ljh = 0, and has extended Theorem 1 to this
case. Here a point m, € Q is minimal for 7" if every point in a neighbor-
hood of m, can be reached by a finite sequence of integral curves of the real
and imaginary parts of the L j» a8 in condition (i) of Theorem 3. His result
is the following theorem.

THEOREM 5 [24]. M is wedge extendable at Z(m,) if and only if 7 is
minimal at m,.

In addition to its intrinsic interest, Theorem 5 has applications to extend-
ability of holomorphic functions across singular hypersurfaces.

We shall now give some new results for CR manifolds which are not nec-
essarily generic. Let M of codimension / in C° be given locally near
myeM by p(Z,Z)=0, 1<j</,with p; smooth and real-valued and
dp,, ..., dp, linearly independent. If, in addition, the complex differentials
dp,,...,dp, have constant rank / , then M is called a CR manifold. In
this case the antiholomorphic vector fields tangent to M form a bundle 77
of dimension n = p—/, . The reader can easily check that [(/+1)/2] </, <.
A solution of the system Ljh = 0 is again called a CR function on M. We
show here that after a holomorphic change in C’ we can put M in the form
of a CR graph over a generic manifold M, so that Theorem 1 can be applied
to obtain extendability for CR functions.

THEOREM 6. Let M be a CR submanifold of C° as above, 0 € M.
Then there exist holomorphic coordinates around 0, a generic manifold M,
in P~ and [ -1, CR functions y =(y,, ..., w,_,l) on M,, w(0)=0,
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such that M is the graph of w over M|, ie.
(5.2) M={m,ym)eC:meM}.

The natural projection of M onto M, is a CR diffeomorphism, i.e. its dif-
ferential carries 7" onto ¥;, the CR bundle for M, . Finally, if M is real
analytic, then the holomorphic coordinates can be chosen so that y = 0.

PrROOF. Let p,, ..., p, be defining functions for M in C”, and /, the
rank of {8p,,...,8p;}. By linear algebra and an apphcatlon of the im-
plicit function theorem we may choose coordinates (z, ... ot s Wi oees
Wy > Vys--e 5 Uyy,) SO that after a linear transformation the p; have the
form

P =Im'wj —¢j(z, z,Rew), 1<£j<2 -1,
(5.3) pj+2[|_l=Re(Uj_Wj(za Z’Rew))’ l SfSl-I,,
Pjui, =Im(v; - yy(z, 2, Rew)), 1<j<gi-1,

where the ¢, are smooth, real-valued functions, and the w; are smooth
complex-valued, all vanishing at the ongm, together with thetr differentials.
Let M, be the generic manifold in €7~ defined by Imw,; - ¢,(z, 2,
Rew) =0, 1 £ j <2l -1 and 7] its CR bundle. Note that dthW =
dxmc% = p -4. It remams to show that the y; are CR functions on

M, . Let .S’ 1 £ j € p-1,, be antiholomorphic vector fields in cp-i-h)
such that thexr restrictions to M, form a basis for the sections of 7] . Since
Z,p, =0 on M, for l<j<p—1 and 1<k <2, -1, anysectton L

of 77 is necessarily of the form L = H' 18% +Z”_, 1;Z; . Itis easy to
check that 4,(0) =0, from which it follows that & ¥ = 0. We may choose
a basis for the sections of 7~ of the form

11,
8 ,
k=1

Now assume that M is real analytic. Then the y; are real analytic CR

functions on M, , which therefore extend holomorphically in oot
H, (z w) is the holomorphic extension of y;, then by replacing the coor-
dmates v; by v; - Hyz, w) we achieve the desired form, i.e. ¥ = 0 in
(5.2).

Conversely, note that if M is of the form (5.2), where ¢ is CR on M|,
then M is CR, since it is the image of M, under a CR diffeomorphism.
This proves Theorem 6.

The following result is proved by using Theorem 6 and then using Theorem
1.

COROLLARY. If M is a CR manifold in C° minimal at 0 € M then any
CR function on M is the boundary value of a holomorphic function on an
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open set of the form % (€, T) M, % ', where M, is as in Theorem 6 and
(&8, T)y, isawedge of edge M, in oo

Very recently, J-M. Trépreau [29] has obtained propagation of extend-
ability of CR functions on a generic CR manifold along minimal CR sub-
manifolds (see Theorem 3), generalizing the results of Hanges and Treves
[17] from the case of holomorphic submanifolds. He also obtains microlocal
results generalizing work of Hanges and Sjéstrand [16], dealing with prop-
agation of microlocal singularities. We refer the reader to [29] for further
details.

Another question of interest is to determine when every CR function on a
generic manifold M can be decomposed as a finite sum of boundary values
of holomorphic functions in wedges of the form (1.2) with edge M. Itis a
well-known result in Fourier analysis that any distribution on R" is locally
a finite sum of boundary values of functions holomorphic in wedges in C”
with edge R”. This result is easily extended to the case where M is a totally
real generic manifold in C° (see, e.g., [3]). Andreotti and Hill [2] showed
that any CR function on a hypersurface M in C’ is the sum of the bound-
ary values of two holomorphic functions, defined on opposite sides of M.
Henkin [18] and Ajrapetyan and Henkin [1] obtained some positive results
for decomposition in higher codimension. The authors jointly with Treves [8]
have shown that decomposition holds in the rigid case, i.e. when the defining
function ¢ given in (2.2) is independent of s. Other positive results, in-
cluding a new proof for the case of a hypersurface, are given in [4]. The first
example of a nondecomposable CR function was given by Trépreau; his ex-
ample is on a generic manifold of codimension two in c. In [29], Trépreau
has obtained more general results on nondecomposability. Connections be-
tween decomposition and extendability of holomorphic functions defined in
generic wedges are discussed in [6].
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