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NONVANISHING OF THE DIFFERENTIAL OF
HOLOMORPHIC MAPPINGS AT BOUNDARY POINTS

M. S. BAOUENDI, XIAOJUN HUANG, AND LINDA PREISS ROTHSCHILD

§0 Introduction

Let M and M’ be two smooth hypersurfaces in C*. A smooth mapping
h: M — M'is a CR mapping if its components are annihilated by the
induced Cauchy-Riemann operator on M. Let pyp € M and suppose that
near po, h is the restriction of a holomorphic mapping H defined on one
side of M near pp and smooth up to M. We shall say that h satisfies the
Hopf lemma property at pop if the component of H normal to M, has a
nonzero derviative at py in the normal direction to M;. The hypersurface
M is said to be minimal at pp € M if there is no germ of a complex
hypersurface contained in M through py. Recall the theorem of Trépreau
[T] that if M is minimal at po, then every CR. function defined on M near
po extends holomorphically to at least one side of M in C" near py. A
stronger condition on a hypersurface M at a point pg is that of essential
finiteness (as defined in [BJT], [BR3|, [DA2]). We will recall this definition
in §1. We note here that if M is of D’Angelo finite type at pg [DA1], then
M is essentially finite at po (and hence minimal at pp).

In this paper we prove a general result of the “Hopf lemma” type for
CR mappings, with nonidentically vanishing Jacobians, between real hy-
persurfaces in C*. Applications of this result to finiteness and holomorphic
extendibility of such mappings are also given. The novelty here is that we
make no assumption on the nonflatness of the mapping or its Jacobian,
nor do we assume that the hypersurfaces are pseudoconvex or minimally
convex.

Theorem 1. Let M be a smooth, connected, orientable hypersurface in C*
which is essentially finite at all points. Let h : M — M’ be a smooth CR
mapping from M to another smooth hypersurface M’ C C*, with Jac h #Z0.
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Let po € M, and suppose that h~ (h(po)) is a compact subset of M. Then
h satisfies the Hopf lemma property at pq.

If the hypersurfaces are pseudoconvex, the result above follows from the
classical Hopf lemma for harmonic functions, as proved in Fornaess [F] (see
also [BBR]). Other results of the Hopf lemma type for CR mappings were
previously obtained in [BR3] and [BRS].

As shown in [BBR|, [BR1], and [DF], the Hopf lemma property can be
used to prove holomorphic extension of CR mappings between real analytic
hypersurfaces. From Theorem 1 we obtain the following corollary.

Corollary 1. Let M, M’, h be as in Theorem 1, and assume in addition
that M and M’ are real analytic. Then h extends holomorphically to a
neighborhood of po in C™.

In the global case, i.e. when M and M’ are compact boundaries, the
compactness of h~!(h(po)) is automatically satisfied, yielding the following
result.

Theorem 2. Let Q and ' be bounded domains in C* with smooth bound-
aries, such that O is essentially finite at all points. Suppose H : )} — Q' is
a proper holomorphic mapping, smooth up to Q. Then H satisfies the Hopf
lemma property at every point p € 9. Furthermore, H is finite-to-one on
.

When  and €’ in Theorem 2 are real analytic, we obtain a new proof
of the following result of the second author and Pan [HP), extending earlier
results in [BR1], [DF}, [BR3].

Corollary 2. If ? and Q' are bounded domains in C* with real analytic
boundaries, and H : @ — V' is a proper holomorphic mapping, smooth up
to 99, then H extends holomorphically to a neighborhood of Q in C™.

It should be noted that Theorem 2 and Corollary 2 may be proved more
directly (see Remark 2.2).

Another application of Theorem 1 is a propagation result of the Hopf
lemma property (Theorem 3), as well as real analyticity (Corollary 3),
analogous to the classical Hartog’s theorem for extension of holomorphic
functions.

Theorem 3. Let M be a smooth, orientable, connected hypersurface in
C" which is essentially finite at all points, and let h : M — M’ be a
smooth CR mapping from M to another smooth hypersurface M' C C",
with Jac h Z 0. Suppose that Uy and U are relatively compact open subsets
of M, with Uy C U. Then if the Hopf lemma property holds at every point
in U\U,, it also holds everywhere in U.
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Corollary 3. Let M be a real analytic, orientable, connected hypersurface
in C" which is essentially finite at all points, and let h : M — M’ be a
smooth CR mapping from M to another real analytic hypersurface M' C
C", with Jac h # 0. Suppose that Uy and U are relatively compact open
subsets of M, with U, C U. If h is real analytic in U \U1, then h is real
analytic everywhere in U and hence extends holomorphically to an open
netghborhood of U in C™.

Remark 0.1. In Theorem 1 and Corollary 1, the condition Jac & % 0 may be
replaced by the stronger condition that M’ does not contain any nontrivial
complex variety through po. (See e.g. [BR4].) A similar statement holds
for Theorem 3 and Corollary 3.

Some of the results of the present paper, including Corollary 1, were
announced earlier by the second author. Also, a recent preprint of Y. Pan
[P] contains a special case of Corollary 1 above and other related results.

§1 Preliminaries

Let M be a smooth real hypersurface in C*. For p € M, we denote
by T, M the real tangent space of M at p and by CT,M its complexifica-
tion. We denote by VM the complex subspace of CT,M consisting of all
antiholomorphic vectors tangent to M at p, and by T;M = Re VM the
complex tangent space of M at p considered as a real subspace of T, M.
Note that if & is a smooth CR map from M to a hypersurface M’, then h
satisfies the Hopf lemma property mentioned in §0 if and only if

Note that for this form of the definition, it is not necessary to assume that
h extends holomorphically to one side of M.

If p(z,%) is a defining function for M near pp = 0, with p(0) = 0 and
dp(0) # 0, we consider the formal Taylor series of p in 2 and Z at 0 and
write R(z,{) for its complexificiation, i.e. R(z,() = ¥ aq,52°¢?, where
a!Blaag = p,azs(0). Let X,,...,X,, be the vector fields with formal
power series coefficients given by

Xj=RCn(0’<)a R(J(O C) ) j=1)"'in—11

n

where we have assumed p., (0) # 0. For a multi-index a = (ay,... ,0n— 1)

we define c,(2) in the ring of convergent power series in n complex variables,
by

(1.1) ca(z) = X*R(z,()l¢=0,



740 M. S. BAOUENDI, X. HUANG, AND L. P. ROTHSCHILD

where X¢ = X ... X "7'. We say that M is essentially finite at 0 if
the ideal (co(2)) generated by the c,(z) in the ring C[[z]] of formal power
series is of finite codimension. It should be noted that this definition is
independent of the choice of coordinates and defining function p; it is given
in a slightly different form in [BR3]. Note also that if M is essentially finite
at po, then M is minimal at po, and that if M is of D’Angelo finite type,
then it is essentially finite.

Recall that an analytic disc in C" is a continuous mapping A : A-Ct
which is holomorphic in A, where A is the open unit disc in the plane.
We say that A is attached to M if A(BA) C M. Let M be a smooth
hypersurface minimal at pg. As in [BR5], we say that M is minimally
conver at pp if M is minimal at pg, and there is a neighborhood U of po in
M and a side of the hyperplane Tp, M in C" such that the real derivatives
%[A({)]|<=‘ lie on that side or in Ty M, for all sufficiently smooth analytic
discs A attached to U with A(1) = po. Here { = £ + in, with { € A.

For the convenience of the reader we begin by stating a number of known
results, Theorems A, B, C and D below, which will be important for the
proofs of Theorem 1. Theorem A is a consequence of a result of Tumanov
[Tu], as observed in [BR5] .

Theorem A [Tu, BR5]. Let M be a smooth, real hypersurface in C*, and

assume that M is minimal at po. Then one of the following two conditions
holds.

(1) M is minimally convex at po.
(2) Every CR function defined in o neighborhood of pp in M extends
holomorphically to a full neighborhood of po in C".

Theorem B [BRS5]. If h is a smooth CR mapping from a smooth hy-
persurface M to another smooth hypersurface M', with M minimal at po,
Jac h # 0, and M’ minimally convez at pp = h(po), then the Hopf lemma
property holds at po.

We need also to recall a result which follows from Theorem 4 in [BR3].

Theorem C [BR3). Let H be a holomorphic map defined in a neighbor-
hood of a smooth hypersurface M essentially finite at po, H(M) C M', with
M' another smooth hypersurface of C"*, and Jac H £ 0. Then H satisfies
the Hopf lemma property at py and H is finite-to-one in a neighborhood of
Po-

We shall also need a stronger version of this result, and we indicate here
its proof.

ar
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Theorem D. Let H be a holomorphic map defined on one side of a smooth
hypersurface M essentially finite at po, with H smooth up to M. Suppose
H(M) C M’, with M’ another smooth hypersurface of C*. Then Jac H
is not flat at po if and only if H satisfies the Hopf lemma property at py.
In addition, if either of these equivalent conditions is satisfied, then any
smooth extension of H to a sufficiently small neighborhood of py in C* is
finite-to-one.

Proof of Theorem D. If Jac H is not flat at py, we conclude that if G is
a formal transversal component of H (as defined in [BR3]), then G # 0.
Hence, by Theorem 4 of [BR3], it follows that H satisfies the Hopf lemma
property and is of finite multiplicity. Conversely, if H satisfies the Hopf
Lemma property at po, by Theorem 4 of [BR3] it follows again that H is
of finite multiplicity and also that M’ is essentially finite at H(py). By
Theorem 3 of [BR3], we conclude also that H is not totally degenerate at
Po, in the sense of [BR3], and hence, using again the Hopf lemma property,
Jac H is not flat at po.

We may assume pp = H(py) = 0. Since H is holomorphic on one side of
M and smooth up to the boundary, its Taylor series at 0 defines a formal
(not necessarily convergent) holomorphic map H = (3" alz%,..., 3 al2%).
The equivalent conditions above imply that H is finite as a formal map.
That is, the ideal generated by the Y a’z®, j = 1,...,n, is of finite
codimension in the ring C{[z]] of formal power series in z. Since the Taylor
series of H coincides with that of any smooth extension of H to C* = R2",

we conclude e.g. by (GG], [EL], that this extension is finite-to-one near 0.
a

§2 Inverse image of a nonminimally convex point.

In this section we shall state and prove a new result, Theorem 4 below,
from which Theorem 1 will follow.

Theorem 4. Let h : M — M’ be a CR map, where M, M’, h, py €
M satisfy all the conditions of Theorem 1. In addition, suppose that M’
ts not minimally convex at py = h(py). Then all CR functions on M
eztend holomorphically to a full neighborhood of py in C*. In particular,

h eztends holomorphically to a neighborhood of py and satisfies the Hopf
lemma property at py.

Before proving Theorem 4, we note that Theorem 1 is a consequence
of Theorem 4 and Theorem B above. Indeed, if M’ is minimally convex
at h(po), then since any essentially finite hypersurface is minimal at all
points, Theorem 1 follows from Theorem B. On the other hand, if h(po) is
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not minimally convex, Theorem 1 is an immediate consequence of Theorem
4.

In the rest of this section, we shall prove Theorem 4. We may assume
that pp = ph = 0, and we let Zas = h~1(0). Note that Zy is a compact
subset of M by the assumptions of the theorem. Hence without loss of
generality, we shall assume that M is bounded.

The following lemma shows that we can reduce the proof of the theorem
to the case where h extends holomorphically to one side of M.

Lemma 2.1. Under the assumptions of Theorem 1, there exists an open
neighborhood U of 0 in C™ such that Zps NU is compact in M NU and h
extends holomorphically to U™, one side of M inU.

Proof. Since M is essentially finite and hence minimal at all points, it fol-
lows that h extends holomorphically to at least one side of M at each point.
Since M is orientable, it is given by a global smooth defining function p
with nonvanishing gradient on M. We may assume that h extends to the
plus side of M, ( i.e. where p(2) > 0) near 0. Let M; be the largest con-
nected open subset of M containing 0 such that h extends holomorphically
to the plus side of M near every point of M,.

If My = M, then the Lemma is an immediate consequence of the as-
sumptions of Theorem 1. Assume therefore that M, is a proper subset of
M and let &M, be its boundary in M. For 6§ > 0, let M} = {p € M; :
dist(p, 0M,) > 6}. Since at every point of M, h extends holomorphically
to at least one side of M, it follows from the definition of M; that there is
an open neighborhood U of 8M; in M such that h extends holomorphically
to both sides of M at every point in U N M;. Applying Theorem C, we
conclude that Zy NU N M is a discrete set.

Let 8M be the boundary of M in C® and choose a > 0 such that
a < dist(Zps,0M) (which is possible by the assumption of the theorem).
Denote by M?® = {p € M : dist(p,0M) > a}. Note that dM; N M is
compact in M. Therefore, there exists 6 > 0 such that for all §, 0 < é < g,
we have

IMINZy =MeNoMENZy cUNM,.
By compactness and the discreteness mentioned above, we conclude that
aMf N Zys is a finite set. Since these sets are all disjoint for different &§’s,
we conclude that there exists 6;, with 0 < 6; < g, such that 6M{s ‘NZpy =
0. Now the lemma follows by taking U to be a sufficiently small open
neighborhood of M%* in C*. O

By Lemma 2.1, after shrinking M if necessary, we may now assume that
there is a connected open set O in C* such that:

(i) OU M is a manifold with boundary of class C*°.
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(ii) h extends holomorphically to @; if H denotes the holomorphic ex-
tension of h, then H € C°(0).
(iii) A(0) = 0.
(iv) Zam = h™1(0) is a compact subset of M.
We write
Z=HY0)no.

We shall show that we can take H to be a proper mapping of an open
domain to its image. The following lemma is crucial in this construction.

Lemma 2.2. Let V be a connected open neighborhood of Zp in M, with
V a compact subset of M. For § > 0, let

(2.3) 0% = {z € O: dist(z, V) < 6},

and d0° = S§ U 84, with S§ = 80P N M and S§ = HO*\SP. Then for any
o > 0 there exists §, 0 < 6 < by, such that SSNZ = 0.

Proof. Note that by assumption, S_‘gﬂ Zpy = 0. Hence there exists € > 0
such that for any § sufficiently small,

(2.4) Zn{ze S§: dist(z,S5N M) < ¢} = 0.

Let Z' = {z € Z : z is not an isolated point of Z}. If there exists § > 0
such that Z’NO°% =@, then ZNO? is countable, and the conclusion of the
lemma follows since the sets S5, as & varies, are disjoint.

To complete the proof of the lemma, we shall assume

(2.5) Zno%#£0,

for all 4 sufficiently small, and reach a contradiction. It is clear that under
condition (2.5) we have

(2.6) Z'NM #0.

We claim that Jac H vanishes to infinite order at every point p € Z' N M.
Indeed if Jac H does not vanish to infinite order at a point p € Zps, then
by Theorem D, p is an isolated point of H~(0) in @. Since this cannot be
the case for p € Z’NM C Zy, the claim follows.

Now let T = {2z € S§ : dist(z,55 N M) > €}, where ¢ satisfies (2.4).
Using (2.4), we note that

Z’N80° c LU (Zy nZ).
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Since T¢ is compactly contained in O for sufficiently small §, and Jac H is
holomorphic in O, there exists C > 0 such that for all multi-indices a

(2.7) sup |D%Jac H(z)| < Cl°l*1al,
2€T$

By the maximum principle on complex varieties (see e.g. [N1]) we have,

(2.8) sup |D%®Jac H(z)|= sup |D%Jac H(z)|.

2€Z2'NO*% 2€Z'NJOS

_I-_I_owever, as proved in the claim above, Jac H vanishes to infinite order on
Z' N M. Hence, in view of (2.7) and (2.8)

(2.9) sup |D%Jac H(z)| = sup |D*Jac H(z)| < Cel*1al.
2€Z2°00% 2€T}

This proves that the radius of convergence of Jac H(z),z € Z’, is greater
than a positive constant which is independent of the distance to M. Hence
Jac H extends holomorphically to a full neighborhood in C" of each point
of Z' N M. Since Jac H vanishes to infinite order there, it follows that
Jac H = 0, contrary to assumption. We conclude that (2.6), and hence
(2.5), cannot hold, which completes the proof of Lemma 2.2. O

In reducing the proof of Theorem 4 to the global case of a proper map-
ping we shall use the following.

Proposition 2.10. Let M be a connected hypersurface of class C° with
M C 80, where O is an open bounded domain in C", and let H be a
holomorphic mapping in O, continuous up to the boundary, Jac H # 0,
with H(M) contained in another hypersurface M’ of class C°. Suppose
0e M, H0) =0, and

(2.11) HY(0)n30 c M.

Then there is a subdomain O) C O satisfying
(i) 0 € 801, and there ezists a sequence {z;} C Oy such that z; — 0
and H(z;) stays strictly on one side of M';
(ii) there exzists U, a neighborhood of 0 in M', with H(O,) D U;
(iii) H : Oy — H(O,) is a proper map.

Proof. We begin with the following lemma, which describes a well-known
construction, see e.g. [BC].
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Lemma 2.12. Let O C C" be an open bounded domain, and suppose
H : O — C" is a holomorphic mapping, continuous up to 80. Let

D={z€0:H(z)¢ H0)}.

If D # 0, then H : D — H(D) is finite-to-one and hence open. Fur-
thermore, if D} is any connected component of H(D), and D, a connected
component of H='(D}), then H : D, — D) is a proper map.

Proof. Since this result is in the “folklore”, we shall be brief. We assume
D # 0. If H is not finite-to-one, there exists w € H(D) for which H~!(w)
has an accumulation point z in D (and hence H(zp) = w). By the defini-
tion of D,

(2.13) H(D)NH(®0) =0, and H(8D)c H(30).

Hence zp € 8D. On the other hand, if zg € D, then there is a nontrivial
variety contained in H~!(w), which would necessarily intersect 8D. Since
this is also impossible, by the definition of D, H is finite-to-one and hence
open (see e.g. [R]).

To show that H : Dy — Dj is proper, suppose z; — 2o, z; € Dy,
z9 € 8D,. Then by continuity H(z;) — H(z9) = wo € D;. We claim
that wo € OD]. Indeed, if wp is an interior point of Dj, let V’ be an
neighborhood of wp in D}. Consider H as a map from O to C". Then a
component of H~1(V') is contained in D), by the definition of D. Then
zg would be an interior point of Dj, contrary to assumption. This proves
Lemma 2.12. O

We may now complete the proof of Proposition 2.10. Let p’ be a defining
function for M’ near 0. Without loss of generality, we may assume that
there exist 2; € 0,7 =1,2,..., with

(2.14) limz; =0 and p'(H(z;)) > 0.
J

Indeed, we first select z; € O with Jac H(z;) # 0. Since H is open near
such a z;, by slightly moving z; if necessary, we may assume H (2;) € M.
Replacing p' by —p' and selecting a subsequence if necessary, we reach the
desired conclusion (2.14).

Let D be as in Lemma 2.12. By hypothesis (2.11) and the continuity
of H it follows that H(8O\M) is a compact set which does not contain 0.
Hence, by taking z; sufficiently close to 0, we may assume that the points z;
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chosen in (2.14) are in D. We shall show that there exists € > 0, arbitrarily
small, such that

(2.15) {we C": |w| < € and p'(w) >0} = W, C H(D).

Suppose that (2.15) is proved. Let D be the connected component of
H(D) containing the connected open set W,. We claim that there is a
connected component D; of H~1(D!) such that 0 € 8D,. Indeed, by
Lemma 2.12, the restriction of H to D is finite-to-one, and the restriction
to any connected component of H~!(D}) is proper, and hence onto D;.
Therefore, H=1(D}) consists of finitely many connected components Dy.
Choose one of these components, say D, which contains infinitely many of
the zj. Then 0 € 8D;. Since, by Lemma 2.12, the restriction of H to D is
proper onto H(D) = Dj, Proposition 2.10 will follow by taking Oy = D;.
It remains to prove (2.15). Choose € such that

(2.16) 0 < € < dist(0, H(8O\M)),

and such that the open set W, defined in {2.15) is connected. Let jo be
such that H(z;,) € W. Let w € W, be arbitrary, and ¥(¢),0 <t < 1, be a
continuous curve connecting H(z;,) and w and contained in W,. Assume by
contradiction that w ¢ H(D). Since H(D) is open, there exists ¢/,0 < t' <
1, such that v(t) € H(D) for 0 < t < t/, but (t') € H(D). Now choose
a sequence t; < t', with ¢z — ¢/, and p; € D with H(px) = v(tx) and
pr — p' € D. Since H(p') = y(t') ¢ H(D), it follows from the definition
of D that p’ € 8D. Recall that H(0D) C H(80). Hence H(p') € H(80).
In view of (2.16) and the fact that H maps M into M’, we must have
H(p') € M’. We reach a contradiction, since H(p') = ¥(t') € W,. The
proof of Proposition 2.10 is now complete. O

Let § be a bounded domain in C* and py € C*. Recall that pg is in
the holomorphic hull of Q1 if there is a compact subset K C € such that

po € K , where

K={zeQ:|f(2)| £ sup |F(w)| for all f € H(Q)}.
we

Here H(S1) denotes the space of all holomorphic functions in 2. We observe
that when pp is a boundary point of €2, then py is in the holomorphic hull
of Q if and only if any function in H(f2) extends holomorphically to some
larger domain which contains pp as an interior point.
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Proposition 2.17. Let  and ' be two bounded domains in C* and H a
proper holomorphic mapping from Q to V. Suppose that py and pjy are
boundary points of Q and Q' respectively, and that there is a sequence
{z;}2, C Q converging to po such that lim; H(z;) = pj. Suppose that
any function in H(QV') is bounded on the sequence {H (2j)}52,- Then po is
in the holomorphic hull of Q.

Remark 2.18. Note that the hypothesis of the proposition is satisfied if p}
is in the envelope of holomorphy of .

Proof. By using a standard result (see e.g. [N2] Chapter 7, Lemma 2), it
suffices to prove the following claim:

Each function in H(Q) is bounded on {z;}. More precisely, for any
f € H(R), there exists a constant Cy > 0 such that |f(z;)| < C; for all 5.

To prove the claim, we note that H is finite-to-one on § since it is
proper. Hence there exists m such that each w € ' has m pre-images,
gk(w),k = 1...m, counted with multiplicity (see e.g. [R]). Now let f €
H(?) and denote by o, (w), ... ,0m(w) the elementary symmetric functions
of f(gx(w)),k = 1,... ,m. By well known results (see e.g. [R]) the ox(w)
are holomorphic in £’ and hence, by hypothesis, uniformly bounded on the
sequence {H(z;)}. If we let w; = H(z2;), we observe that f(z;) is one of the
roots of the polynomial X™ — o, (w;)X™ ! +.. .4 (=1)™0mm(w;). Since the
coefficients of this polynomial are bounded, independently of j, it follows
that the f(z;) are bounded, independently of j. This proves the claim and
hence Proposition 2.17. O

Proof of Theorem 4. First, we prove that under the assumptions of The-
orem 4, M’ is minimal at py = h(pp). Indeed, suppose not. Then there
is a complex hypersurface I contained in M’ through p). Hence, this hy-
persurface must contain all small analytic disks A’ attached to M’ with
A'(1) = p,. On the other hand since M is minimal at po, the boundaries
of small analytic discs A attached to M with A(1) = py cover a full neigh-
borhood of pp in M [Tu]. Since we can take A’ = h o A, this contradicts
the assumption that Jac h # 0. (See also [E] for related results.)

By Lemma 2.1, we may assume that h admits a holomorphic extension
H to one side of M, and that conditions (i)-(iv) preceding Lemma 2.2 are
satisfied, so that we may apply Lemma 2.2. If § satisfies the conclusion
of Lemma 2.2, then H satisfies the hypotheses of Proposition 2.10 with
O = 5. We then obtain from Proposition 2.10 a subdomain O, of O
such that the restriction of H to O, is a proper mapping from O, to o1,
continuous up to the boundary, with po € 80, and pj = H(po) € 30}.
Moreover, there exists a sequence {z;} C O, such that w; = H(z;) — p),
with {w;} strictly on one side of M.
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Since M’ is minimal, but not minimally convex at pp, by assumption,
it follows from Theorem A that any CR function defined near pj € M’
extends holomorphically to a full neighborhood of pg in C*. Now, by using
the Baire Category Theorem (see e.g. [BR2, Theorems 7 and 8] for a more
general result) we conclude that there is a connected neighborhood U’ of
ph in C" with U’ N O] # 0 such that every function in H(0]) extends
holomorphically to U’. In particular, we see that any such function is
uniformly bounded on {w;}. Using Proposition 2.17 we conclude that po
is in the holomorphic hull of O;, which lies on the side of M to which
every CR function near py extends. It follows immediately that every CR
function near pp on M extends holomorphically to a full neighborhood of
po in C*. The Hopf lemma property then follows from Theorem C above.
The proof of Theorem 4 (and hence that of Theorem 1) is now complete.
a

§3 Consequences of Theorem 1 and remarks

In this section we prove the other results stated in the introduction and
make some remarks.
We first note that Corollary 1 follows easily from Theorem 1 and the fol-

lowing holomorphic extendibility result, which is a consequence of Theorem
1 of [BR1]:

Theorem E [BR1]. Let h: M — M’ be a smooth CR map, with M and
M’ real analytic hypersurfaces in C*. Assume that M is essentially finite
at po and that h satisfies the Hopf Lemma property at po. Then h eztends
holomorphically to a full neighborhood of py in C™.

Proof of Theorem 2. In order to apply Theorem 1, we note first that since
H is proper, Jac H # 0 in Q. Hence its boundary value on 952 does not
vanish identically. Note also that for any po € 9, H1(H(po)) is closed
in 8 and hence compact. We may now conclude by Theorem 1 that the
Hopf lemma property holds at each point in 2.

To prove that H is finite-to-one in £, we observe first that H is finite-to-
one in §, since it is proper (see e.g. [R]). Since the Hopf lemma property
holds at pg, we may apply the last part of Theorem D to conclude that for
any po € 89, H is finite-to-one in a neighborhood of pg in Q. The desired
result then follows by compactness of Q. O

Remark 2.1. 1t also follows from Theorem 4 in [BR3] that under the hy-
potheses of Theorem 2, 9 is also essentially finite at all points.

Proof of Corollary 2. By a result of Diederich and Fornaess [DF], any com-
pact real analytic boundary in C* does not contain a nontrivial complex
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variety and hence is essentially finite. We may then apply Theorem 2 to
conclude that the Hopf lemma property is satisfied at every point of M.
The conclusion of Corollary 2 then follows from Theorem E. O

Remark 2.2. In fact, Corollary 2 may be proved much more directly by
using Proposition 2.17 together with Theorems A, B, C, and E.

Proof of Theorem 3. It suffices to show that if py € U), then h satisfies
the Hopf lemma property at py. By taking the connected components of
U and U, containing pp, we may assume, without loss of generality, that
Uy and U are connected. Let E = {p € U : h(p) = h(po)}. Since M
is essentially finite, h extends holomorphically to one side of M near any
point. Therefore, since by assumption the Hopf lemma property holds in
U\U1, it follows from Theorem D that E N (U\U;) is a discrete set.
For 6 > 0, sufficiently small, let

U® = {p € U : dist(p,8U) > 6},

and let U? be its boundary. By the discreteness established above and the
compactness of 8U¢, we conclude that for sufficiently small 6, that SU°NE
is finite. Hence there exists §, > 0 for which the set 8U® N E is empty. It
is now easy to check that the hypotheses of Theorem 1 are satisfied for h
and pg by taking M = U® . This proves Theorem 3. O

Proof of Corollary 3. Since h is real analytic at all points of U\U; and M
is real analytic, h extends holomorphically to a full neighborhood in C* of
each such point. By Theorem C, h then satisfies the Hopf lemma property
in all of U\U; and hence in all of U by Theorem 3. Applying Corollary 1,
we then have that h extends holomorphically to a full neighborhood of U
inC®, 0O
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