PARAMETRICES WITH C^∞ ERROR FOR \Box_b AND OPERATORS OF HORMANDER TYPE

Linda Preiss Rothschild* and David Tartakoff†

Introduction

We construct here parametrices for certain second order hypoelliptic differential operators including the boundary Laplacian \Box_b of the Cauchy-Riemann operator. These classes of operators have been studied in Folland and Stein (1974), and Rothschild and Stein (1976), where parametrices were constructed to invert the operator modulo an error which is "smoothing" (see Section 2) of any preassigned finite order. Starting with the approximate inverses defined in Rothschild and Stein (1976) via singular integrals on nilpotent Lie groups, we obtain operators which are inverses modulo an error which is infinitely smoothing. In fact, the error will be given by an operator with a smooth kernel.

A differential operator D is called hypoelliptic if $Df = g$ with $g \in C^\infty(U)$ implies $f \in C^\infty(U)$ for any open set U. We shall consider two classes of hypoelliptic differential operators. First, let M be a partially complex (or C-R) manifold of dimension $2\ell + 1 = m$ with a fixed Riemannian metric. (See, for example, Folland and Kohn, 1972, for relevant definitions.) \Box_b is defined as the Laplacian $\theta_b \bar{\theta}_b + \bar{\theta}_b \theta_b$, where θ_b is the formal adjoint of $\bar{\theta}_b$, the tangential Cauchy-Riemann operator. \Box_b operates on (p,q) forms on M. Kohn (1964) has proved that the following conditions on the Levi form ρ on M imply that \Box_b is hypoelliptic on (p,q)-forms.

The Levi form ρ has at least $\min(q + 1, \ell - q + 1)$ pairs

$\gamma(q)$

of eigenvalues of opposite sign or $\max(q + 1, \ell - q + 1)$

eigenvalues of the same sign.

We shall construct a two-sided inverse, modulo an infinitely smoothing error error, S, for \Box_b acting on (p,q)-forms, provided the condition $\gamma(q)$

*Supported in part by N. S. F. Grant MCS77-01155.
†Supported in part by N. S. F. Grant MCS72-05055A04.
is satisfied. Parametrices for \Box_b have previously been given by Boutet de Monvel (1974) and by Sjöstrand (1974). However, our operators are proved to be bounded on the appropriate L^p Sobolev spaces for $1 < p < \infty$, while the methods used to construct the parametrices of Boutet de Monvel and Sjöstrand do not seem to lend themselves to such a proof.

A key step in the proof of hypoellipticity of \Box_b is the observation that the highest order term is a negative definite quadratic expression in real vector fields which, together with their commutators, span the tangent space. Hörmander (1967) generalized this idea as follows. Let X_1, X_2, \ldots, X_n be real vector fields on a manifold M, $m = \dim M$, such that X_1, X_2, \ldots, X_n, together with their commutators

$$[X_{i_1}, [X_{i_2}, \ldots, [X_{i_r}, X_j] \ldots],] \quad j \leq r$$

up to length r span the tangent space at each point. Then

$$L = \sum_{i=1}^{n} x_i^2$$

is hypoelliptic. We shall construct an inverse, modulo an infinitely smoothing operator, for L. To our knowledge, there is no other method known for constructing such an operator. For the special case $r = 2$, however, the pseudodifferential operators defined by Beals (preprint), Boutet de Monvel (1974) and Sjöstrand (1974) contain parametrices for many operators of the form L. Furthermore, Grusin (1970) constructs parametrices for certain operators of this type with arbitrary r. None of these classes of parametrices is shown to preserve L^p for all $1 < p < \infty$.

We remark here that our methods could also be applied to the more general operators

$$X_0 + \sum_{i=1}^{n} x_i^2$$

considered in Hörmander (1967). For simplicity, we restrict out attention to sums of squares.

We wish to express our thanks to E. M. Stein and J. Rauch for several helpful conversations on this work.

Main Results

Let X_1, X_2, \ldots, X_n be real vector fields which, together with their commutators of length $\leq r$, span the tangent space, TM. Since we are interested in local results, we may replace M by a relatively compact sub-
PARAMETRIC WITH C\(^\infty\) ERROR

set and define the following function spaces in \(\mathbb{R}^m\):

\[
L^\infty = \{f: f \text{ essentially bounded}\}
\]

\[
L^p = \{f: \|f\|_{L^p} = (\int |f|^p \, dx)^{1/p} < \infty\}
\]

The weighted Sobolev spaces \(S^p_k\) are defined for nonnegative integers \(k\):

\[
S^p_k = \{f \in L^p: x_{i_1} x_{i_2}, \ldots, x_{i_j} \in L^p, \ j \leq k
\]

\[
\text{with norm } \|f\|_{S^p_k}^p = \|x_{i_1} \ldots x_{i_j} f\|_{L^p}^p
\]

The sum is taken over all indices \((i_1, \ldots, i_j)\) \(j \leq k\), \(0 \leq i_k \leq n\), with

\[
x_{i_0} = 1
\]

We say \(f \in S^p_k,_{\text{loc}}\) if \(\phi f \in S^p_k\) for any \(\phi \in C_0^\infty\). The classical \(L^p\) Sobolev spaces are defined as usual and denoted \(L^p, L^p_{\alpha, \text{loc}}\) (cf. Stein, 1970). The Lipschitz spaces are also defined with reference to \(\mathbb{R}^m\) (\(\|\|\) denoting Euclidean length): For \(0 < \beta < 1\)

\[
\Lambda^\beta,_{\text{loc}} = \{f: \sup_{y \neq 0} |\phi f(x+y) - \phi f(x)|/\|y\|\beta < \infty, \ \text{all } \phi \in C_0^\infty\}
\]

with norm

\[
\|f\|_{\Lambda^\beta} = \|f\|_{\infty} + \sup_{y \neq 0} |\phi f(x+y) - \phi f(x)|/\|y\|\beta
\]

\[
\Lambda^1,_{\text{loc}} = \{f: \phi f \in L^\infty; \sup_{y \neq 0} |\phi f(x+y) + \phi f(x-y) - 2\phi f(y)|/\|y\| < \infty \ \forall \phi \in C_0^\infty\}
\]

Inductively, for \(\alpha > 1\),

\[
\Lambda^{\alpha,}_{\text{loc}} = \{f: \phi f \in L^\infty \text{ and } \frac{\partial}{\partial x_j} (\phi f) \in \Lambda^{\alpha-1}, \ \phi \in C_0^\infty\}
\]

with norm

\[
\|f\|_{\Lambda^\alpha} = \|f\|_{L^\infty} + \sum_{j=1}^{n} \left\| \frac{\partial}{\partial x_j} (\phi f) \right\|_{\Lambda^{\alpha-1}}
\]

Let \(L, L'\) be any two of the spaces defined above. A mapping \(T: L \to L'\) will be said to be bounded from \(L_{\text{loc}}\) to \(L'_{\text{loc}}\) if \(T\phi_1 T\phi_2\) is bounded in the appropriate norms for any \(\phi_1, \phi_2 \in C_0^\infty\). \(T\) will be said to be smoothing of order \(\lambda\) if \(T\) is bounded from \(L^p_{\alpha, \text{loc}}\) to \(L^p_{\alpha+\lambda/r, \text{loc}}\).
for all real α, from $S_{k,\text{loc}}^\lambda$ to $S_{k+\lambda,\text{loc}}^\lambda$, all nonnegative k, from $\Lambda_{\alpha,\text{loc}}$ to $\Lambda_{\alpha+\lambda/r,\text{loc}}$, all $\alpha > 0$, and Λ^r_{loc} to $\Lambda^r_{\lambda/r,\text{loc}}$. T is smoothing of infinite order if it is smoothing of order λ for all $\lambda > 0$.

THEOREM 1. Let

$$L = \sum_{j=1}^{n} \partial_j^2$$

and $\phi \in C^\infty_0(M)$ be given. Then there exist operators P and P', smoothing of order 2, and S_{∞}, S'_∞, smoothing of infinite order, such that for $f \in L^p(M)$, $1 < p < \infty$,

$$Pf = \phi f + S_{\infty}f$$

$$Lp'f = \phi f + S'_\infty f$$

Furthermore, $P\phi = \phi P'$. The errors S_{∞} and S'_∞ are integral operators with infinitely smoothing kernels.

THEOREM 2. Let $\Box_b^{(q)}$ be the boundary Laplacian acting on (p,q)-forms on a CR-manifold M. Suppose $Y(q)$ is satisfied. Then, for any $\phi \in C^\infty_0(M)$, there exist $p^{(t)}$ and $S^{(t)}_\infty$ as in Theorem 1 such that for $f \in C^\infty_0(M)$,

$$Pf = \phi f + S_{\infty}f$$

$$\Box_b^{(q)} f = \phi f + S_{\infty}f$$

(All operators here are vector valued, and f is a (p,q)-form.)

In Folland and Stein (1974), Theorem 2 is proved (in the case of a definite Levi form) with $P = P_k$ and the error, S_k, is smoothing of any preassigned order k. In Rothschild and Stein (1976), Theorem 1 and the general case of Theorem 2 are proved, also with an error smoothing of any finite order.

Approximation by Operators on a Nilpotent Lie Group

We shall construct P and P' for L only; the construction for \Box_b is similar. As in Rothschild and Stein (1976), we begin by extending each ∂_j to a smooth vector field \tilde{X}_j on a product manifold $M = M \times \mathbb{R}^q$. We mention here some of the important features of this extension and refer
to Rothschild and Stein (1976) for details.

(i) \(\tilde{X}_1, \tilde{X}_2, \ldots, \tilde{X}_n \) and their commutators of length at most \(r \) span \(\tilde{\mathfrak{m}} \).

(ii) \(\tilde{X}_j = X_j \) on functions independent of the new variables.

(iii) The commutators of length \(j, 1 \leq j \leq r \), satisfy as few linear relations as possible, i.e., the only linear relations are those generated by the Jacobi identity and antisymmetry.

As a consequence of (iii), it is possible to identify \(\tilde{M} \) with a nilpotent Lie group as follows. Let \(N \) be the "free" nilpotent group of step \(r \) on \(n \) generators. Then, there is a 1-1 correspondence

\[
\tilde{x}_{jk} \leftrightarrow y_{jk}, \quad 1 \leq j \leq r
\]

(3.1)

between a basis \(\{\tilde{x}_{jk}\} \) for \(\tilde{\mathfrak{m}} \), and a basis \(\{y_{jk}\} \) of the Lie algebra of \(N \). Here, each \(\tilde{x}_{jk} \) is a commutator of the \(\tilde{x}_k \) of length \(j \), and each \(y_{jk} \) is the commutator of length \(j \) of generators \(Y_1, Y_2, \ldots, Y_n \) of \(n \). We make the convention \(Y_{1k} \equiv Y_{k1} \), \(\tilde{x}_{1k} = \tilde{x}_k \), \(1 \leq k \leq n \).

For \(\tilde{\xi} \in \tilde{M} \) fixed, the basis \(\{\tilde{x}_{jk}\} \) provides a coordinate system around \(\tilde{\xi} \) via the exponential map

\[
\tilde{\eta} = \exp(\sum_{j} u_{jk} \tilde{x}_{jk}) \tilde{\xi} \leftrightarrow (u_{jk})
\]

(3.2)

The correspondences (3.1) and (3.2) give common coordinate systems for a neighborhood of \(\tilde{\xi} \) in \(\tilde{M} \) and a neighborhood of \(0 \) in \(N \):

\[
\tilde{\eta} = \exp(\sum_{jk} u_{jk} \tilde{x}_{jk}) \tilde{\xi} \leftrightarrow \exp(\sum_{jk} u_{jk} y_{jk}) \leftrightarrow (u_{jk})
\]

We define the important map \(\Theta: \tilde{M} \times \tilde{M} + N \) by

\[
\Theta(\tilde{\xi}, \tilde{\eta}) = \exp(\sum_{jk} u_{jk} y_{jk})
\]

(3.3)

Integral Operators of Type \(\lambda \)

Following Rothschild and Stein (1976), we shall define the parametrix of \(\{\tilde{X}_j\} \) on \(\tilde{M} \) as an integral operator obtained from "homogeneous" kernels on \(N \). We first review homogeneity on \(N \).

The dilations \(\delta_s: Y_j \rightarrow s Y_j, s > 0 \) extend to automorphism of \(N \), and via the exponential map to automorphisms of the group \(N \). We denote the automorphisms again by \(x \rightarrow \delta_s(x), x \in N \). A function, \(f \), is homogeneous of degree \(\alpha \) if

\[
f(\delta_s(x)) = s^\alpha f(x) \text{ for all } x
\]
A differential operator D is called homogeneous of degree λ if $D(fo\delta_s) = s^\lambda(Df) o \delta_s$, $s > 0$, and of local degree $\leq \lambda$ if its Taylor expansion is a formal sum of homogeneous differential operators of degrees $\leq \lambda$. In this sense, the differential operator

$$D = \sum_{j=1}^{n} \frac{Y_j^2}{j!}$$

is homogeneous of degree 2, as is, for instance, $[Y_j, Y_k]$. By a careful choice of (3.1), one can prove (see Rothschild and Stein, 1976), that for each $\tilde{\xi}$, in the coordinates (u_{jk}), we have the important correspondence

$$\tilde{X}_j = Y_j + R_j$$

(4.1)

where R_j is of local degree ≤ 0. It easily follows that

$$\sum_{j=1}^{n} \tilde{X}_j^2 = \sum_{j=1}^{n} Y_j^2 + D$$

(4.2)

where D is of local degree ≤ 1.

A norm function on N is a mapping $x \rightarrow <x>$, smooth away from $x = 0$ and homogeneous of degree 1 such that

(i) $<x> = <x^{-1}>$

(ii) $<x> \geq 0$ for all x, and $<x> = 0$ only if $x = 0$.

We define

$$\rho(\tilde{\xi}, \tilde{n}) = \Theta(\tilde{\xi}, \tilde{n})$$

(4.3)

ρ is a pseudometric in the sense that we have the "triangle" inequality

$$\rho(\tilde{\xi}, \tilde{n}) \leq c(\rho(\tilde{\xi}, \tilde{\zeta}) + \rho(\tilde{\zeta}, \tilde{n}))$$

(4.4)

The homogeneous dimension Q of N is

$$Q = \sum_{\alpha=1}^{r} \alpha \dim n^\alpha$$

where n^α is the eigenspace of δ_s with eigenvalue s^α. Any function g, smooth except at 0 and homogeneous of degree $-Q + \beta$, $0 < \beta$ defines a distribution by group convolution: $f * f*g$. A homogeneous function g of degree $-Q$ smooth away from the origin whose mean value, $\int_{a<\xi<u>b} g(u)du$, is zero for all a, b defines a distribution in principal value:
PARAMETRICS WITH C^∞ ERROR

\[f + \lim_{\varepsilon \to 0} \int_{|u| > \varepsilon} \beta(u^{-1}v)f(u)du \]

g will then be called a kernel of type β, for $0 \leq \beta < Q$. By the map Θ, these kernels define operators on \tilde{M} as follows. A kernel of type on \tilde{M} is a function $K(\tilde{\xi}, \tilde{\eta})$ on $\tilde{M} \times \tilde{M}$ such that, for every integer $s > 0$, we can write

\[K(\tilde{\xi}, \tilde{\eta}) = \sum_{i=1}^{\ell(s)} a_i(\xi)k^{(i)}(\Theta(\tilde{\eta}, \tilde{\xi}))b_i(\tilde{\eta}) + E_s(\tilde{\xi}, \tilde{\eta}) \]

such that

(a) $E_s \in C_0(\tilde{M} \times \tilde{M})$

(b) $a_i, b_i \in C_0(\tilde{M}), \ i = 1, 2, \ldots, \ell$

(c) the functions $u \mapsto k^{(i)}(u)$ are kernels of type $\beta > s$, depending smoothly on ξ.

An operator of type β, $\beta > 0$ is one given by

\[T_Kf(\tilde{\xi}) = \int K(\tilde{\xi}, \tilde{\eta})f(\tilde{\eta})d\tilde{\eta} \]

where K is a kernel of type β; for $\beta = 0$, an operator of type β is given by a pair (K, a), where $a \in C_0^\infty$ and

\[T_Kf(\tilde{\xi}) = \lim_{\varepsilon \to 0} \int_{|\Theta(\tilde{\xi}, \tilde{\eta})| > \varepsilon} K(\tilde{\xi}, \tilde{\eta})f(\tilde{\eta})d\tilde{\eta} + a(\tilde{\xi})f(\tilde{\xi}) \]

We review here some important facts concerning kernels K_λ of type λ and the corresponding operators T_{K_λ}.

The important inequality

\[|K_\lambda(\tilde{\xi}, \tilde{\eta})| \leq C_p(\tilde{\xi}, \tilde{\eta})^{-Q+\lambda} \]

(4.5)

is an almost immediate consequence of the definitions. Furthermore, since

\[\int_{|u| < \varepsilon} |u|^{-Q+\lambda} \leq C(b^\lambda - a^\lambda) \]

(see Folland and Stein, 1974), it can be shown that

\[\int |K_\lambda(\tilde{\xi}, \tilde{\eta})|d\tilde{\eta} \leq CC_{K, \lambda} \]

\[\int |K_\lambda(\tilde{\xi}, \tilde{\eta})|d\tilde{\xi} \leq CC_{K, \lambda} \]

(4.6)

where
\[C_{K, \lambda} = \sup(\rho(\tilde{\xi}, \tilde{\eta}^\lambda) : K_\lambda(\tilde{\xi}, \tilde{\eta}) \neq 0) \]

PROPOSITION 4.1. For \(\lambda > 0 \), \(T_{K, \lambda} \) extends to a bounded operator on \(L^p \), with norm \(\leq CC_{K, \lambda} \).

The proposition follows from (4.6); see, for example, Rothschild and Stein (1976). The following are fundamental properties of kernels \(K_\lambda \) of type \(\lambda \). (See Rothschild and Stein, 1976.)

If \(D \) is a differential operator of local degree \(\leq d \), then \(D^\tilde{t}_K K_\lambda \) and \(D^\tilde{t}_K \) are kernels of type \(\lambda - d \) for \(d \leq \lambda \).

\[T_{K, \lambda} \quad \text{is smoothing of order} \quad \lambda', \quad \lambda = 0, 1, 2, \ldots \]

\[\chi_{i+1}^p K_j = \sum j\chi_{j} K_j + K_0 \quad \text{where each} \ K_j \quad \text{and} \ K_0 \quad \text{is a kernel} \quad \text{of type} \quad \lambda. \]

Reduction to the Case \(M = \tilde{M} \)

Before proceeding to the construction we shall show that it suffices to assume \(\tilde{M} = M \). For, suppose there exist \(\tilde{P} \) smoothing of order 2 on \(\tilde{M} \) and \(\tilde{S}^{(1)} \) smoothing of infinite order as in Theorem 1. Let \(E \) be the extension operator (from functions on \(M \) to functions on \(\tilde{M} \)) and \(R \) the restriction operator (vice versa) defined in Rothschild and Stein (1976). Then, if \(T \) is an operator which is smoothing of order \(\alpha \) on \(\tilde{M} \), \(RTE \) is smoothing of order \(\alpha \) on \(M \). Let \(P = R\tilde{P}E \) and \(S^{(1)} = R\tilde{S}^{(1)}E \). Then \(R\tilde{P}E = R\phi E + R\tilde{S}^{(1)}E \). However, since \(\tilde{E} = E \), \(P = \phi I + R\tilde{S}^{(1)}E \) where \(P = \tilde{P}E \) and \(\phi \) is chosen so that \(R\phi E = \phi \).

To construct the right parametrix, let \(L^t \) be the transpose of \(L \). Then

\[L^t = \sum_{j=1}^n x_j x_j^2 \]

and so the above construction gives a left parametrix \(P' \) for \(L^t \) with error operator \(S_{\infty}^t \). We shall show that \(P'^t \) and \(S_{\infty}^t \) also have the desired smoothing properties, which will complete the proof.

Construction of \(P \)

As in Folland and Stein (1974) and Rothschild and Stein (1976), we begin with the existence of a kernel \(k \) of type 2 on \(N \) such that
PARAMETRIZES WITH C\(^\infty\) ERROR

\(\phi_k = \delta\), the delta function (cf. Folland, 1975). Then define \(P_1\) by

\[
P_1 f = \int \phi_1(\xi)k(\Theta(n, \xi))\phi_2(n)f(n)dn
\]

where \(\phi_1, \phi_2 \in C_0^\infty(M)\) and \(\phi_2 \equiv 1\) on the support of \(\phi_1\). To compute the error which results from using \(P_1\) as a first approximation to the parametrix, note that \(L_k^\eta(\Theta(n, \xi)) = \delta_{n=\xi} - S_1\), where \(S_1\) is a kernel of type 1. In fact, \(S_1 = -D_k^\eta(\Theta(n, \xi))\) by (4.2). Also, \(L\) is equal to its transpose modulo a differential operator \(R\) of local degree \(< 1\). Thus, using (4.2)

\[
P_1 L f = \int \phi_1(\xi)k(\Theta(n, \xi))\phi_2(n)Lf(n)dn
\]

\[
= \int \phi_1(\xi)(L + R)^\eta(k(\Theta(n, \xi))\phi_2(n))f(n)dn
\]

\[
= \phi_1(\xi)f(\xi) + T_1f(\xi) + T_2f(\xi) - S_1\phi_2f
\]

where

\[
T_1f = \int \phi_1(\xi)k(\Theta(n, \xi))\phi_2''(n)f(n)dn
\]

\[
T_2f = \int \phi_1(\xi)k_1(\Theta(n, \xi))\phi_2''(n)f(n)dn
\]

\[
S_1\phi_2f = \int \phi_1(\xi)k_1^{(1)}(\Theta(n, \xi))\phi_2(n)f(n)dn
\]

Here \(\phi_2', \phi_2''\) denote first and second order differential operators, applied to \(\phi_2\), \(k_1^{(1)} = (R + D)^\eta k\), which is, therefore, of type 1, and \(k_1\) is a finite sum of kernels of the form \((X_j)^\eta k\), which are of type 1. Since \(k(\Theta(n, \xi))\) have support bounded away from the diagonal \(\xi = n\), and \(k(\Theta(n, \xi))\) is smooth away from the diagonal, \(T_1\) and \(T_2\) are infinitely smoothing operators.

Now, let \(\xi_0 \in M\) be fixed and suppose a sequence \(\{\phi_i\}\) of functions in \(C_0^\infty(M)\) is chosen such that, for suitable \(\varepsilon\),

(i) \(\sup(\rho(\xi_0, \xi) : \xi \in \operatorname{supp} \phi_i, \text{ some } i \leq \varepsilon)\)

(ii) \(\phi_{i+1} \equiv 1\) on \(\operatorname{supp} \phi_i\)

Define \(P_i\), \(S_i\), and \(R_i\) by

\[
P_i f(\xi) = \int \phi_1(\xi)k(\Theta(n, \xi))\phi_{i+1}(n)f(n)dn
\]
$$S_1 \phi_{i+1}(\xi) = -\int \phi_1(\xi) k_{11}(\theta(\eta, \xi)) \phi_{i+1}(\eta) f(\eta) d\eta$$

$$R_1 f(\xi) = -\int \phi_1(\xi) [k(\theta(\eta, \xi)) \phi''_{i+1}(\eta) + k_1(\theta(\eta, \xi)) \phi'_{i+1}(\eta)] f(\eta) d\eta$$

where the \(\phi \) derivatives are as in (6.2). Then, for any \(N \)

$$[P_1 + S_1 P_2 + S_1 S_2 P_3 + \ldots + S_1 S_2 \ldots S_{N-1} P_N] f$$

$$= \{ \phi_1 f + (R_1 + S_1 R_2 + S_1 S_2 R_3 + \ldots + S_1 \ldots S_{N-1} R_N) f + (S_1 S_2 \ldots S_N \phi_{N+1}) f \}$$

In passing to the limit, we must choose the \(\phi_j \) with care. All will have support in a fixed small ball. Since \(\phi_j \equiv 1 \) near \(\text{supp } \phi_{j-1} \),

$$\| \phi_j \|_{L^\infty} \to \infty$$

as \(j \to \infty \), and, therefore, the norm of \(R_j \to \infty \) as \(j \to \infty \). In fact, the norm of \(R_1 \) may be greater than one. This explains, also, why, in general, it is not possible to take the whole error \((S_1 + R_1 \text{ at the first stage}) \) and iterate it to obtain a fundamental solution with no error: the series will not converge. We choose the \(\phi_j \) so that \(\phi_1(\xi) = 1 \) when

$$\rho(\xi, \xi_0) \leq \varepsilon \sum_{k=1}^{j+1} \frac{1}{k^2}$$

and

$$\text{supp } \phi_j \subset \left\{ \xi: \rho(\xi, \xi_0) \leq \varepsilon \sum_{k=1}^{j+1} \frac{1}{k^2} \right\}$$

with

$$|\phi_j| \leq C(j + 1)^{2r} \quad |\phi_j'| \leq C(j + 1)^{4r}$$

(6.4)

\(\varepsilon \) will be chosen later. (We could have chosen \(\sum_{k=1}^{\infty} (1/k^s) \) for another \(s > 1 \) just as well.) To construct the \(\phi_j \), we begin by constructing auxiliary functions \(\psi_j \) on the group \(N \). Choose \(\psi_0 \in C^\infty_0(N) \) with support in \(\{ x: |x| \leq \varepsilon \} \), the ball of radius \(\varepsilon \) around \(0 \), such that \(\psi_0 = 1 \) for \(|x| \leq \varepsilon/2 \). Define \(\psi_j \) as the dilation of \(\psi_0 \) by a factor of \(2/(j+1)^2 \), i.e., \(\psi_j(x) = \psi_0(\delta_{s_j}(x)) \), where \(s_j = (j + 1)^2/2 \). Then,

$$|\psi_j(x)| \leq ((j + 1)^2/2)^2 |\phi_0(\delta_{s_j}(x))|$$
\[
\varphi_j(x) \leq ((j + 1)/2)^{2r} |\varphi_0'(s_j(x))|
\]
so that \(\varphi \) satisfies the inequalities (6.4) with \(\phi_i \) replaced by \(\varphi_1 \).
Then put
\[
\psi_j = \begin{cases}
1 & <x> < \varepsilon \sum_{k=1}^{j+1} \frac{1}{k^2} \\
\varphi_j(s_j(x)) & \varepsilon \sum_{k=1}^{j} \frac{1}{k^2} < <x> < \varepsilon \sum_{k=1}^{j+1} \frac{1}{k^2} \\
0 & \varepsilon \sum_{k=1}^{j+1} \frac{1}{k^2} < <x>
\end{cases}
\]
where
\[
c_j = 1 - \varepsilon <x> \left(\sum_{k=1}^{j} \frac{1}{k^2} - \frac{1}{(j + 1)^2} \right)
\]
Since the \(c_j \) have a common bound, (6.4) is again satisfied. We put
\[
\phi_j(\xi) = \psi_j(\Theta(\varepsilon_0, \xi)) \quad (6.5)
\]
Now, by Proposition 4.1, the \(L^p \) norm of the operator \(S_i \) is \(\leq d(\varepsilon) \), where \(d(\varepsilon) \to 0 \) as the diameter of the fixed ball containing the supports of all the \(\phi_i \) goes to 0. Hence
\[
\left\| S_{\sum_{j=1}^{N} \phi_{N+1} f} \right\|_{L^p} \leq d(\varepsilon)^N C^N \left\| \phi_{N+1} f \right\|_{L^p} \quad (6.6)
\]
for \(1 \leq p \leq \infty \), where \(C \) depends only on \(K \). \(d(\varepsilon) \) may be made arbitrarily small by shrinking supports. Thus, we may choose \(\varepsilon \) and the \(\phi_i \) so that \(d(\varepsilon)C < 1 \) in (6.6). For such \(\varepsilon \), the terms in (6.6) tend to zero as \(N \to \infty \).
Next, we examine the limit of \(E_N = R_1 S_1 R_2 \ldots S_{j+1} \ldots S_{N-1} R_N \) as \(N \to \infty \).
Since the norm of \(R_{j+1} \) is \(\leq C(j + 1)^{4r} \), the norm of \(E_N \) on \(L^p \) is bounded by
\[
\sum_{j=1}^{N} d(\varepsilon)^j C^j C(j + 1)^{4r}
\]
for \(1 \leq p \leq \infty \), which converges as \(N \to \infty \). Also, the \(L^p \) norm of the
operator $S_1 S_2 \ldots S_N P_{N+1}$ is bounded by $c d(\varepsilon)^N C^N$.

We have, therefore, proved

Lemma 6.1. Let $S = R$

$$S_\infty = R_1 + \sum_{N=1}^\infty S_1 S_2 \ldots S_N R_{N+1}$$

and

$$P = P_1 + \sum_{N=1}^\infty S_1 S_2 \ldots S_N P_{N+1}$$

with ϕ_i chosen as above. Then, both sums converge as operators on L^P for $1 \leq p \leq \infty$, and

$$P \phi \leq \phi_1 + S_\infty$$

S_∞ is Infinitely Smoothing

We shall first show that S_∞ is bounded from L^P to S^P_k for any k. This is true for any single term $S_1 S_2 \ldots S_j R_{j+1}$ since R_{j+1} is bounded from L^P to S^P_k and each S_i is bounded on S^P_k. By (4.8) we may thus exclude the terms $S_1 S_2 \ldots S_j R_{j+1}$ for $j < k$. For any k-tuple (i_1, \ldots, i_k), the operator

$$X_{i_1} \ldots X_{i_k} S_{i_1} \ldots S_{i_k}$$

is bounded from L^P to L^P by (4.9), since each X_j is of local degree < 1 and therefore any $X_j S_k$ is bounded on L^P by (4.7) and (4.9). Thus, we need only show that

$$\sum_{N=k+2}^\infty S_{k+1} \ldots S_N R_N$$

is bounded on L^P, which follows as in the proof of Lemma 6.1, since each term has norm $< d(\varepsilon)^{N-k} C^{N-k} C(N+1)^4 r$, with $C d(\varepsilon) < 1$.

The proof that S_∞ is bounded from L^P to L^P_k for all k follows immediately from the above and that easy fact that $S^P_{tk} \subset L^P_k$. Finally, to prove that S_∞ is smoothing with respect to the Lipschitz spaces, it suffices to apply Sobolev's Lemma to show that for any α, k can be chosen so large that the inclusion map $L^2_k \rightarrow \Lambda_\alpha$ is bounded. Since the inclusion $L^2_{loc} \rightarrow L^2_{loc}$ is bounded, the proof is complete. We have, thus, proved
LEMMA 7.1. S_{∞} is smoothing of infinite order.

The limit $P = P_1 + S_1P_2 + S_1S_2P_3 + \ldots$

As above, we begin with the \mathcal{S}^P_k spaces.

LEMMA 8.1. For any k,

$$p^{(k)} = \sum_{N=k}^{\infty} S_1S_2 \ldots S_N S_{N+3} P_{N+4}$$

is bounded from L^P to \mathcal{S}^{P}_{k+2}.

Proof. Since

$$x_1 x_2 \ldots x_{k+2}$$

is bounded from L^P to L^P, the lemma follows from the convergence, in L^P norm, of the operator

$$\sum_{N=k}^{\infty} S_{N+3} P_{N+4}$$

From the lemma, and the fact that each term is bounded from \mathcal{S}^P_k to \mathcal{S}^P_{k+2}, it follows that P is bounded from \mathcal{S}^P_k to \mathcal{S}^P_{k+2}. For the usual Sobolev spaces L^P_α, choose $k > r\alpha + 2$. Then, $\mathcal{S}^P_k \subset L^P_\alpha$. Lemma 8.1 then shows the sum $S_1 S_2 \ldots S_N P_{N+1} + S_1 S_2 \ldots S_N P_{N+2} + \ldots$ to be bounded from $L^P \subset L^P_\alpha$ to $\mathcal{S}^P_k \subset L^P_\alpha$. Since each term is bounded from L^P_α to L^P_α, so is P. The argument for the Lipschitz spaces is similar: each term is bounded from L_α to L_α, and the infinite sum is bounded from $L^\infty \subset L^2$ to $L^2_k \supset L_\alpha$. The Transposes P^t and S_{∞}^t

Since the right parametrix is obtained as the transpose of the left parametrix for L^t, we must prove that the operators P and S_{∞} constructed above have appropriately smoothing transposes. These involve

$$S_{i}^t f(n) = -\int K_1(\Theta(n, \xi)) \phi_i(\xi) f(\xi) d\xi$$

$$P_{i}^t f(n) = \int \phi_{i+1}(n) K_2(\Theta(n, \xi)) \phi_i(\xi) f(\xi) d\xi$$

$$R_{i}^t f(n) = -\int (\phi_{i+1}^t(n) k(\Theta(n, \xi)) + K_1(\Theta(n, \xi) \phi_{i+1}^t(n)) \phi_i(\xi) f(\xi) d\xi$$
and

\[p^t = p_1^t + p_2^t S_1^t + \cdots + p_N^t S_{N-1}^t + \cdots + p_1^t S_1^t + \cdots \]
\[S_{\infty}^t = R_1^t + R_2^t S_1^t + \cdots + R_N^t S_{N-1}^t + \cdots + R_1^t S_1^t + \cdots \]

The convergence in L^p norms of these infinite sums of operators is proved as before. However, the smoothing properties are proved differently; the reason is that the terms

\[x_{i_1} \cdots x_{i_{k+2}} R_{N-1}^t S_1^t \]

and

\[x_{i_1} \cdots x_{i_k} p_{N-1}^t S_1^t \]

may entail $k + 2$ derivatives on ϕ_N.

To handle this, we choose the ϕ_j with slightly more care. We shall still have $\phi_j(\xi) = 1$ for

\[\rho(\xi_0, \xi) \leq \varepsilon \sum_{\kappa=1}^j \frac{1}{\kappa^2} \]

and $\phi_j(\xi) = 0$ for

\[\rho(\xi_0, \xi) > \varepsilon \sum_{\kappa=1}^{j+1} \frac{1}{\kappa^2} \]

However, we shall require that ϕ_j also satisfy

\[\left| \left(\frac{\partial}{\partial \xi} \right)^\alpha \phi_j \right| \leq C|\alpha| (|\alpha|!)^2 (j + 1)^2 |\alpha|^r \tag{9.1} \]

This may be accomplished by defining ϕ_j by (6.5) as before, but requiring the function ψ_0 used in the construction to be (for example) of Gevrey class two, i.e., satisfying

\[\left| \left(\frac{\partial}{\partial x} \right)^\alpha \psi_0 \right| \leq C|\alpha| (|\alpha|!)^2 \]

Assuming the cutoff functions have been defined as above, we now prove the smoothing properties.
PARAMETRIC WITH C∞ ERROR

LEMMA 9.1. S^t_∞ is smoothing of infinite order.

Proof. As before, it suffices to prove that S^t_∞ is bounded from L^p_k to L^p_k for all k, $1 < p < \infty$. Now,

$$X^\infty_{i_1} X^\infty_{i_2} \ldots X^\infty_{i_k} R^t_{N_{N-1}} \ldots S^t_1$$

is a finite sum of operators with j derivatives falling on the cutoff functions ϕ^t_{N+1} and ϕ^t_{N+1} of R_N in the n variable, and $k-j$ derivatives (in η) falling on the kernels $k(\Theta(\eta, \xi))$ and $k^2(\Theta(\eta, \xi))$ of R_N^t. By (4.5)

$$|X^\infty_{i_1} X^\infty_{i_2} \ldots X^\infty_{i_k} k(\Theta(\eta, \xi))| \leq C(k, j) |\varphi(\eta, \xi)|^{-Q-k+j-1}$$

(9.2)

where $C(k, j)$ is a constant depending on k and j.

If $\varphi(\eta, \eta) > \varepsilon/2(N+1)^2$ on the support of $\phi^t_{N+1}(\eta)\phi_N(\xi)$,

$$\varphi(\eta, \eta)^{-Q-k+j+1} \leq \left(\frac{2C(N+1)^2}{\varepsilon} \right)^{k+Q+j-1}$$

(9.3)

Using (9.2), (9.3) and (9.1),

$$\left\|X^\infty_{i_1} X^\infty_{i_2} \ldots X^\infty_{i_k} R^t_{N} \right\|_{L^p_k} \leq C'(k) \frac{(N+1)^2(k+Q)}{\varepsilon^{k+Q}} (k!)^2(N+1)2^{kr}$$

where $\| \|_{L^p_k}$ denotes operator norm, and $C'(k)$ is independent of N.

Therefore,

$$\left\|X^\infty_{i_1} X^\infty_{i_2} \ldots X^\infty_{i_k} R^t_{N_{N-1}} \ldots S^t_1 \right\|_{L^p_N} \leq C''(k) \frac{(N+1)^{(2k+2Q+2kr)}}{\varepsilon^{k+Q}} CC_N d(\varepsilon)^N$$

so, as in Section 7, it suffices to choose $d(\varepsilon) < C^{-1}$.

Finally, we must show

LEMMA 9.2. P^t is smoothing of order two.

Proof. As before, it suffices to show that, for any (i_1, \ldots, i_{k+2}),

$$\left\|X^t_{i_1} \ldots X^t_{i_{k+2}} p^t_{N+1} S^t_{N \ldots N-k} \right\|_{L^p_k}$$

$$= \left\|X^t_{i_1} \ldots X^t_{i_{k+2}} \phi_{N+2} p^t_{N+1} S^t_{N \ldots N-k} \right\|_{L^p_k}$$
is bounded by a polynomial in N, where $P_0 g(\xi) = \phi_0(\xi) \int k(\theta(\eta, \xi)) \phi_0(\eta) g(\eta) d\eta$ and $S_0 g(\xi) = \phi_0(\xi) \int k_1(\theta(\eta, \xi)) \phi_0(\eta) g(\eta) d\eta$, $\phi_0 \in C_0^\infty(\{ \xi : \rho(\xi, \xi) < \varepsilon \})$, and is identically one near the support of ϕ_i for all i. Using (4.9) to pass X's across P_0^t and the S_0^t's, we obtain $c(k)$ terms, the worst of which, namely the one with all derivatives on ϕ_{N+2}^t, has L^p norm bounded by $c_k(k!)^2(N + 2)^{2r}$.

The Kernels of S_∞ and S'_∞

We now prove that the kernels of S_∞ and S'_∞ are functions in $C_0^\infty(M)$. In Lemmas 7.1 and 9.1, we have shown that S_∞ and its transpose S'_∞ are both infinitely smoothing operators. The same is true of S'_∞ and S'_∞.

Hence, the result follows from a more general result. Lacking an explicit reference, we give a simple proof.

PROPOSITION 10.1. Let $s(x, y)$ be compactly supported and in L^1, separately in x and y and set $Tf(x) = \int_{\mathbb{R}^m} s(x, y) f(y) dy$. Suppose that $f \in L^2$, and all α,

$$|D^\alpha T f| \leq C_\alpha \|f\|_{L^2}$$

$$|D^\alpha T^* f| \leq C_\alpha \|f\|_{L^2}$$

Then, $s(x, y) \in C_0^\infty(\mathbb{R}^m \times \mathbb{R}^m)$.

Proof. Let $(1 - \Delta_z)^t$ denote the pseudodifferential operator with symbol $(1 + |\xi|^2)^{t/2}$, t real, with $\| \cdot \|$ the Euclidean norm.

It suffices to show that, for some ℓ, $(1 - \Delta_x)^{-\ell}(1 - \Delta_y)^{-\ell}s(x, y) \in C^\infty$. Choose ℓ even, so that $(1 - \Delta_x)^{-\frac{\ell}{2}} \delta_{x=x_0} \in L^2_{10}(\mathbb{R}^m)$. Then,

$$|D^\alpha_x s(x, y)(1 - \Delta_y)^{-\ell} \delta_{y=y_0} dy| = |(D_x(1 - \Delta_y)^{-\ell} s(x, y))(x, y_0)|$$

$$\leq C_\alpha$$

uniformly in y_0

and, similarly,

$$|(D^\beta_y (1 - \Delta_x)^{-\ell} s(x, y))(x_0, y)| \leq C_\beta$$

uniformly in x_0

But, then, it follows that, for any α', β'

$$|D^\alpha_x D^\beta_y (1 - \Delta_x)^{-\ell}(1 - \Delta_y)^{-\ell} s(x, y)| \leq C_{\alpha', \beta'}$$
which completes the proof.

REFERENCES

Beals, R. Characterization of pseudodifferential operators and applications. Preprint.

