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PARAMETRICES WITH €™ ERROR FOR Db AND OPERATORS OF HORMANDER TYPE

Linda Preiss Rothschild* and David Tarr't:akoff"r

Introduction

We construct here parametrices for certain second order hypoelliptic
differential operators including the boundary Laplacian Cg of the Cauchy-
Riemann operator. These classes of operators have been studied in Folland
and Stein (1974), and Rothschild and Stein (1976), where parametrices were
constructed to invert the operator modulo an error which is 'smoothing"
(see Section 2) of any preassigned finite order. Starting with the approxi-
mate inverses defined in Rothschild and Stein (1976) via singular integrals
on nilpotent Lie groups, we obtain operators which are inverses modulo an
error which is infinitely smoothing. In fact, the error will be given by
an operator with a smooth kernel.

A differential operator D is called hypoelliptic if Df = g with
g € CQ(U) implies f € Cw(U) for any open set U. We shall consider two
classes of hypoelliptic differential operators. First, let M be a par-
tially complex (or C-R) manifold of dimension 22 + 1 = m with a fixed
Riemannian metric. (See, for example, Folland and Kohn, 1972, for relevant
definitions.) 0, is defined as the Laplacian ebﬁ + §£6b, where @, is
the formal adjoint of 3,, the tangential Cauchy-Riemann operator. C%
operates on (p,q) forms on M. Kohn (1964) has proved that the following
conditions on the Levi form p on M imply that Db is hypoelliptic on
(p,q)-forms.

The Levi form p has at least min(q + 1,2 - q + 1) pairs
Y(q) of eigenvalues of opposite sign or max(q + 1,2 - q + 1)
eigenvalues of the same sign.

We shall construct a two-sided inverse, modulo an infinitely smoothing error

error, S, for E% acting on (p,q)-forms, provided the condition Y(q)
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256 LINDA PREISS ROTHSCHILD AND DAVID TARTAKOFF

is satisfied. Parametrices for Db have previously been given by Boute{
de Monvel (1974) and by Sjostrand (1974). However, our operators are proved
to be bounded on the appropriate 1P sobolev spaces for 1 < p < o, while
the methods used to construct the parametrices of Boutet de Monvel and
Sjostrand do not seem to lend themselves to such a proof.

A key step in the proof of hypoellipticity of E% is the observation
that the highest order term is a negative definite quadratic expression in
real vector fields which, together with their commutators, span the tangent
space. Hormander (1967) generalized this idea as follows. Let xl,Xz,...,Xn
be real vector fields on a manifold M, m = dim M, such that xl’XZ""’Xn’
together with their commutators

[Xi ,[Xi ,...[Xi X, 1...1,1] j<r

1 2 1%

up to length r span the tangent space at each point. Then

L= rfxf

i=1
is hypoelliptic. We shall construct an inverse, modulo an infinitely
smoothing operator, for £. To our knowledge, there is no other method
known for constructing such an operator. For the special case r = 2, how-
ever, the pseudodifferential operators defined by Beals (preprint), Boutet
de Monvel (1974) and SjOstrand (1974) contain parametrices for many operators
of the form L. Furthermore, Grusin (1970) constructs parametrices for
certain operators of this type with arbitrary r. None of these classes of
parametrices is shown to preserve P for all 1 < p < «.

We remark here that our methods could also be applied to the more

general operators

T2
Xg + L%

i=1
considered in Hormander (1967). For simplicity, we restrict out attention
to sums of squares.

We wish to express our thanks to E. M. Stein and J. Rauch for several

helpful conversations on this work.

Main Results

Let Xl’x2""’xn

commutators of length < r, span the tangent space, TM. Since we are in-

be real vector fields which, together with their

terested in local results, we may replace M by a relatively compact sub-
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set and define the following function spaces in Rr™:

©

L
LP

{f:f essentially bounded}
. - Py 1/P
{(£:0161 _ = (f]£]Fdx) < o}
L

P

The weighted Sobolev spaces SE are defined for nonnegative integers k:

P . p. P
sf=1{felL .xilxiz,...,xijf el’, j<k

with norm 181° = Yux. ...x. &P
sP 15 00P

The sum is taken over all indices (il,...,i.) j<k, 0< iz < n, with

]
X. =1
‘o
p 3 P “ s P
We say f € Sk loc if ¢f € Sk for any ¢ € CO. The classical L* Sobo-
?
lev spaces are defined as usual and denoted Lg, Lg loc (cf. Stein, 1970).
The Lipschitz spaces are also defined with reference to r" (M It denoting
Euclidean length): For 0< g <1
0O
A 1oc = (E:sup|0£(xsy) - ¢£() /1B < =, a1l ¢ € C}
with norm
Nofl, =168, + sup [o£(x+y) - ¢£(x)|/MyiB
8 lIyli>0
A = {£:¢f € L”; sup |¢f(x+y) + ¢£(x-y) - 26£(0) |/Iyll < = vo € CT)
1,1oc Iyl >0 0

Inductively, for a > 1,

- . o _a_ 0
Am,loc = {f:¢f €L and axj (¢f) € Aa_l, ¢ € co}
with norm
m
9
Nofll, =1l¢fl _ + T == (¢£)
Aa L j=1” axj " AOL-l

Let L, L' be any two of the spaces defined above. A mapping

T:L - L' will be said to be bounded from Lloc to Lioc if ¢1T¢2 is
bounded in the appropriate norms for any ¢1,¢2 € C:. T will be said to

be smoothing of order A if T is bounded from LP to LP s
- a,loc a+A/r,loc
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p p :
for all real a, from Sk,loc to sk+l,lgc’ all nonnegative k, from
Aa,loc to Aa+l/r,loc all a >0, and Lloc to AA/r,loc' T 1is smooth-

ing of infinite order if it is smoothing of order X for all X > 0.

THEOREM 1. Let

n
£= 1%
j=1
and ¢ € C:(M) be given. Then there exist operators P and P', smoothing
of order 2, and S,» S., smoothing of infinite order, such that for
felPM, 1<p<w,

PLE = ¢f + S_f
LP'f = ¢f + S!f

Furthermore, P¢ = ¢P'. The errors S, and S! are integral operators

with infinitely smoothing kernels.

THEOREM 2. Let Eéq) be the boundary Laplacian acting on (p,q)-
forms on a CR-manifold M. Suppose Y(q) is satisfied. Then, for any
¢ € C:(M), there exist P(') and Si') as in Theorem 1 such that for
fe c‘;(M),

POE = ¢f + S_f
O£ = of + SIE

(All operators here are vector valued, and f is a (p,q)form.)

In Folland and Stein (1974), Theorem 2 is proved (in the case of a
definite Levi form) with P = Pk and the error, Sk’ is smoothing of any
preassigned order k. In Rothschild and Stein (1976), Theorem 1 and the
general case of Theorem 2 are proved, also with an error smoothing of any

finite order.

Approximation by Operators on a Nilpotent Lie Group

We shall construct P and P' for £ only; the construction for
E% is similar. As in Rothschild and Stein (1976), we begin by extending
each X; to a smooth vector field ii on a product manifold M=Mx R,

We mention here some of the important features of this extension and refer
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to Rothschlld and Stein (1976) for details
(1) X,,X
(ii) Xj = X; on functions independent of the new variables.

in and their commutators of length at most r span ™.

(iii) The commutators of length j, 1< j €r, satsify as few linear
relations as possible, i.e., the only linear relations are those
generated by the Jacobi identity and antisymmetry.

As a consequence of (iii), it is possible to identify M with a nil-

potent Lie group as follows. Let N be the "free" nilpotent group of step

r on n generators. Then, there is a 1-1 correspondence

X., <Y, 1€j<r (3.1)

jk jk

between a basis (X, k} for TM, and a basis {YJ } of the Lie algebra
n of N. Here, each xjk is a commutator of the Xl of length j, and
each ij is the commutator of length ~J of generators YI’YZ""’Yn of
n. We make the convention Y 1k = Y Xlk Xk’ 1<k<n.

For £ eEM fixed, the basis {X k} provides a coordinate system

around E via the exponential map
n= expciujkxjk)s < () (3.2)

The correspondences (3.1) and (3.2) give common coordinate systems for a
neighborhood of E in M and a neighborhood of 0 in N:

i = exp(Quyp Xy )8 Exp(Juyy ¥V5p) > (ugp)

We define the important map ©:M x M + N by
e(E,n) = Exp(Zujijk) (3.3)

Integral Operators of Type A

Follow1ng Rothschild and Stein (1976), we shall define the parametrix
of ZX on M as an integral operator obtained from "homogeneous" kernels
on N. We first review homogeneity on N,

The dilations GS:Yj > st, s > 0 extend to automorphism of np,
and via the exponential map to automorphisms of the group N. We denote
the automorphisms again by x -+ Gs(x), x € N. A function, f, is homo-
geneous of degree o if

£(8,(x)) = s®f(x) for all «x
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A differential operator D is called homogeneous of degree A if D(foGS) =
sA(Df) 0 65, s > 0, and of local degree < A if its Taylor expansion is a
formal sum of homogeneous differential operators of degrees € A. 1In this
sense, the differential operator

D=

J

I o~

Y2
13
is homogeneous of degree 2, as is, for instance, [Yj’Yk]' By a careful
choice of (3.1), one can prove (see Rothschild and Stein, 1976), that for

each £, in the coordinates (ujk), we have the important correspondence

X; = Y. + R, 4.1
J J J ( )
where Rj is of local degree < 0. It easily follows that
n _ n
YX2= Yy +p (4.2)
=17 =1

where D is of local degree < 1.

A norm function on N is a mapping x -+ <x>, smooth away from x = 0
and homogeneous of degree 1 such that

i) <x> = <« 1>

(ii) <x> 20 for all x, and <x> =0 only if x = 0,

We define
p(E, 1) = <©(E,f)> (4.3)
p 1is a pseudometric in the sense that we have the "triangle" inequality
(€, < c(o(E,0) + o(Z,M) (4.4)

The homogeneous dimension Q of N is

T
Q= Jadimn
a=1

a

where n% is the eigenspace of Gs with eigenvalue s%. Any function g,
smooth except at 0 and homogeneous of degree -Q + B, 0 < B defines a
distribution by group convolution: f -+ fsxg. A homogeneous function g of
degree -Q smooth away from the origin whose mean value, fa<ku><bg(u)du,
is zero for all a,b defines a distribution in principal value:
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-1
<u>>eg(u v)f(u)du

f -+ linm |
>0
g will then be called a kernel of type B, for 0 <8 < Q. By the map
©, these kernels define operators on M as follows. A kernel of type
on M is a function K(§,n) on M x M such that, for every integer s > 0,

we can write

- 2(s) ~ (1) o~ - ~
K@M = ) a; @k O @) + E (&,
1:

such that
(a) E € cg(ﬁxﬁ)
L - s
(b) a;,b; € Co0M, i =1,2,...,2

(c) the functions u - k(l)(u) are kernels of type = s, depending

£
smoothly on £.

An operator of type B, B > 0 is one given by

TEE) = [KE,ME A

where K is a kernel of type B; for B = 0, an operator of type B is

given by a pair (K,a), where a € Cz and

TE® = 1in [ o7 fyss K EMEM + adeE)

We review here some important facts concerning kernels KA of type
XA and the corresponding operators Ty -
The important inequality A

-Q+A

IKy B, | < Co(E, ) (4.5)

is an almost immediate consequence of the definitions. Furthermore, since
Ia<]u|<b|ul_Q+X < C(bx - aA) (see Folland and Stein, 1974), it can be
shown that

[ &M < ccy
(4.6)
J1%, &, |dE < ccy

where
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o = sup{p(E ~)‘)'K (E,7) # 0}
K, p o7 1Ky (8,0

PROPOSITION 4.1. For X > 0, TK extends to a bounded operator on
Lp, with norm < CCK,A’ A

The proposition follows from (4.6); see, for example, Rothschild and
Stein (1976). The following are fundamental properties of kernels KA of

type A. (See Rothschild and Stein, 1976.)

If D is a differential operator of local degree < d,

then DnKx and DEKA are kernels of type A - d for 4.7)
d <.
TK is smoothing of order A, A =0,1,2,... (4.8)
A
Er = TyN .
XJK = ijKj + K, where each K, and K, is a kernel (4.9)
of type A.

~

Reduction to the Case M =M

Before proceeding to the construction we shall show that it suffices
to assume M = M. For, suppose there exist P smoothing of order 2 on
M and §£l) smoothing of infinite order as in Theorem 1. Let E be the
extension operator (from functions on M to functions on M) and R the
restriction operator (vice versa) defined in Rothschild and Stein (1976).
Then, if T is an operator which is smoothing of order o on ﬁ, RTE is
smoothing of order o on M. Let P = RPE and Sil) = Rgil)E. Then
R§$E = R$IE + ngE. However, since fE = EL, PL = §I + R§mE where
P=RPE and ¢ is chosen so that RJE = ¢.

To construct the right parametrix, let ct be the transpose of [.
Then

n
t - ot
L" = X
L X5
and so the above construction gives a left parametrix P' for £t with
error operator S!. We shall show that Pt and S;t also have the

desired smoothing properties, which will complete the proof.

Construction of P
As in Folland and Stein (1974) and Rothschild and Stein (1976), we
begin with the existence of a kernel k of type 2 on N such that



PARAMETRICES WITH C™ ERROR 263

Dk = §, the delta function (cf. Folland, 1975). Then define P1 by

Pif = o, (E)K(O(N,E)), (M) E(M)dn

where ¢l,¢2 € C;(M) and ¢2 = 1 on the support of ¢l. To compute the

error which results from using P. as a first approximation to the para-

1
metrix, note that £nk(®(n,£)) = 5n=€ - Si, where Si is a kernel of type
1. In fact, Si = -an(e(n,g)) by (4.2). Also, £ 1is equal to its trans-
pose modulo a differential operator R of local degree < 1. Thus, using

(4.2)

PiLE = [0, (E)K(O(n,€)),(MLE(n)dn

fo, () (¢ + R)n(k(e(n.E))¢2(n))f(n)dn (6.1)

6, (EYE(E) + T E(E) + THE(E) - S,0,f

where
T,£ = [o, (E)k(O(n, £))¢5(m £(n)dn
T,f = [¢, (E)K, (O(n,£)) ¢4 (M) £(n)dn (6.2)
$,6,£ = [o, 0k ©(n,£)6, M EMIdn

Here ¢é,¢" denote first and second order differential operators, applied

to ¢, K?l)

finite sum of kernels of the form (Xj)k, which are of type 1. Since

= (R + D)nk, which is, therefore, of type 1, and K1 is a

¢1(£)¢é(n) and ¢, (£)¢5(n) have support bounded away from the diagonal
E=n, and k(©(M,E)) 1is smooth away from the diagonal, Tl and T2 are
infinitely smoothing operators.

Now, let £, €M be fixed and suppose a sequence {¢i} of functions

in C:(M) is chosen such that, for suitable ¢,

(1) SuP{D(EO,i)tﬁ € supp ¢;, some i < e}
(6.3)
(ii) ¢i+1 =1 on supp ¢i
Define Pi’ S., and Ri by

i

PEE) = [o, (KON, )4, (MEM)dn
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£8) = -[o; KD @, )9, MEM)an

1+1
R,£(E) = -[6, (B [k(O(n,E))8Y,, (n) + K (O(n,£))¢},, (MT£(n)dn
where the ¢ derivatives are as in (6.2). Then, for any N

[Pl + Sle + Slszp3 + ...+ SISZ cee SN-le]£f

= [0 + (R;#S|R,+5.5 Ro+...+5,...5 \RIIE + (S;5,...8. 6y )
In passing to the limit, we must choose the ¢j with care. All will

have support in a fixed small ball. Since ¢j = 1 near supp ¢j—1’

Il¢:'illm+°°
as j -+ o, and, therefore, the norm of Rj + o as j + o, In fact, the
norm of R1 may be greater than one. This explains, also, why, in general,
it is not possible to take the whole error (S1 + R1 at the first stage)
and iterate it to obtain a fundamental solution with no error: the series
will not converge. We choose the ¢j so that ¢i(5) = 1 when

P(EE)) <€ i —15

and

j+l 1
supp ¢; C So(&&o)‘ieli =z

with
oyl <G + 1% oyl <+ ¥ (6.4)

€ will be chosen later. (We could have chosen 2(1/25) for another s > 1
just as well,) To construct the ¢ , Wwe begin by constructing auxilliary
functions Y. on the group N. Choose wo € C (N) with support in
{x:<x> < €}, the ball of radius € around 0, such that wo for
<x> < g/2. Define E& as the dilation of wo by a factor of 2/(J+1) ,
i.e., wj(x) = wo(st(x)), where sj = (jJ +1) /2 Then,

[Tl < G+ D22 lvye, 0]

]
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- . 2,,,2
W) <G+ DD, ()|
J
so that ¥ satisfies the inequalities (6.4) with ¢i replaced by Ei.
Then put
jxl
1 <x><€e ) 15
=1 %
- L] jil 1
b= TG ) e ) Leaws<e] L
J LS g=1 22 g1 22
jxl
] e} J; < <x>
2=1 2
where

j
€ 1 1
e, =l-==|)=5-—7
) et (1 R 1)2>

Since the cj have a common bound, (6.4) is again satisfied. We put
"’j &) = wj (0(&y,€)) (6.5)

Now, by Proposition 4.1, the LP norm of the operator Si is < d(e),
where d(e) - 0 as the diameter of the fixed ball containing the supports
of all the ¢i goes to (. Hence

E <da@"cYo

(6.6)

1 - Snnaa 1] P o1 ] P

for 1 <p<w, where C depends only on K. d(g) may be made arbitrarily
small by shrinking supports. Thus, we may choose € and the ¢i so that
d(e)C <1 in (6.6). For such €, the terms in (6.6) tend to zero as
N + «,

Next, we examine the limit of Ey = R1+SIR1+...+SISZ...SN_1RN as

N> x

is <€ C( + 1)4r, the norm of E, on LP

Since the norm of Rj+ N

1
is bounded by

N j .3 4r
§ dee)cde + 1)
j=1

for 1 < p < «, which converges as N + «, Also, the LP norm of the
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operator Slsz"'SNPN+1 is bounded by cd(e)NCN.

We have, therefore, proved

LEMMA 6.1. Let S =R

(-]
Se = Ry + ] 8;S,...5R,
N=1
and
«©
P=P + Nlelsz...szN+1

with ¢i chosen as above. Then, both sums converge as operators on LP
for 1 <p <o, and

S, s Infinitely Smoothing
We shall first show that S is bounded from LP to SE for any k.

This is true for any single term Slsz"'SjRj+l since Rj+l is bounded
from LP? to SE and each Si is bounded on SE. By (4.8) we may thus

exclude the terms SISZ"‘SjRj+ for j < k. For any k-tuple (11,...,1k),

1
the operator

X. ...Xi Sl...S

i, X k

is bounded from LP to LP by (4.9), since each X. is of local degree
< 1 and therefore any XjS2 is bounded on LP by (4.7) and (4.9). Thus,
we need only show that

S .5

k+1° - Sn-1Ry

(o]

N=k+2
is bounded on Lp, which follows as in the proof of Lemma 6.1, since each
term has norn < d(e)V K" Ken+1)*T, with cd(e) < 1.

The proof that S_ is bounded from P to LE for all k follows
immediately from the above and that easy fact that Sgk c LE. Finally, to
prove that S_ is smoothing with respect to the Lipschitz spaces, it suf-
fices to apply Sobolev's Lemma to show that for any o, k can be chosen
so large that the inclusion map Li -+ Aa is bounded. Since the inclusion

A %

loc loc 1S bounded, the proof is complete. We have, thus, proved
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.

LEMMA 7.1. S_  is smoothing of infinite order.

o

The Limit P = P] + s]P2 + 5152p3 + ...

As above, we begin with the SE spaces.

LEMMA 8.1. For any k,

Lo

(k) :
P = )} S.,S....5, .P
Nek 1277 TTN#3TN+4

: p P
is bounded from L to Sk+2'

Proof. Since

X, X, ...X, S,S5....8
i 2 ke 172 k+2
is bounded from LP to Lp, the lemma follows from the convergence, in

P norm, of the operator

[+<]

Y S, .25 .,...S P
Nok K+3 k+d N+3 N+4

From the lemma, and the fact that each term is bounded from SP to

k
p ; : P p
Sk+2’ it follows that P is bounded from Sk to Sk+2. For the usual

P P (P
Sobolev spaces La’ choose k > ra + 2. Then, Sk C La+2/r‘ Lemma 8.1
then shows the sum SISZ"'SNPN+1 + Slsz°"SN+1PN+2 + ... to be bounded
from LP c P to sP c P . Since each term is bounded from LP to

o k o+2/r o

Lg+2/r’ so is P. The argument for the Lipschitz spaces is similar: each
term is bounded from A to A and the infinite sum is bounded from
- 2 2, o a+2/r
L CL to Lk a+2/1"
The Transposes Pt and S:

Since the right parametrix is obtained as the transpose of the left.
parametrix for £t, we must prove that the operators P and S_ construc-

ted above have appropriately smoothing transposes. These involve

SIEM) = -[K, (©(n,£))0; (E)E(E)AE
PYE(M) = [o,,) (K, (O(n,E))6, (E)E(E)E
RFE(N) = -[{8],, (KOM,E)) + K  @(,E)4Y, , (n)}o, (E)E(E)AE
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and
t_ .t t, ptetgt t.t t
P- = P1 281 352 1 cel * PNSN 1" S1 cee
t _ ot . rtst & rbstst t.t gt
Se = Rl + RS/ + RS, S/ + ...+ RSy o ... S+ ...

The convergence in LP norms of these infinite sums of operators is proved
as before. However, the smoothing properties are proved differently; the

reason is that the terms

tot
X. ...X, RS vee S
11 1k+2 N N-1 1
and
tet t
X. ... X P_S ... S
11 i N 'N-1 1

may entail k + 2 derivatives on ¢N.
To handle this, we choose the ¢j with slightly more care. We shall
still have ¢j(€) =1 for

p(gy,8) <€ i -
2=1 &

N

and ¢j(€) = 0 for

j'il 1
p(&E,,8) > ¢ -
0 =1 22

However, we shall require that ¢j also satisfy

l( 52 %, | < cc'“'(lall) (G + 1)2|°"r (9.1)

This may be accomplished by defining ¢j by (6.5) as before, but requiring
the function wo used in the construction to be (for example) of Gevrey

class two, i.e., satisfying

| (Z)%| < ccl®l clan?

Assuming the cutoff functions have been defined as above, we now prove
the smoothing properties.
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t

LEMMA 9.1. S is smoothing of infinite order.

Proof. As before, it suffices to prove that S; is bounded from LP

to L forall k, 1<p<w Now,

X. X. ...X. RS
1

t t
2 1 N™N-1

...Sl

is a finite sum of operators with j derivatives falling on the cutoff
. . . R o .
functions &+1 and h+1 of RN in the n variable, and k j deri
vatives (in n) falling on the kernels k(®(n,&)) and K2(®(n,£)) of
t

RN. By (4.5)

XD X7 L] k(O(n,E))| < ek, i) |ocg,m |2k (9.2)
172 (k-3)
where C(k,j) is a constant depending on k and j.
If p(E,n) > e/2(+1)% on the support of @ . (My(E),

k+Q-j-1

. 2 2 . k+Q
o(g,ny " Tk+I*1 < (_—L—ZC Z*” ) < (__(__2c ’:“” ) (9.3)

Using (9.2), (9.3) and (9.1),

2(k+Q)
xglx'i‘z...x’i‘ka;"Lp <C'(K) Q‘ﬂk———- & +
€

where " " P denotes operator norm, and C'(k) is independent of N.

Therefore,

(N+1)(2k+2Q+2kr)

N N
€k+Q CCd(e)

[I X0 x“ o] RNS < C'(K)

N-1 1“Lp

so, as in Section 7, it suffices to choose d(g) < C'l.

Finally, we must show

LEMMA 9.2, Pt is smoothing of order two.

Proof. As before, it suffices to show that, for any (il""’ik+2)’

t tet
s, X5, PoetSNher+Shad

S+ -5g

=% i X3 o®n-ul P

¢ s 6
142 N+2 0'N+1 0 N°0
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is bounded by a polynomial in N, where Pog(é) = ¢0(€)fk(®(n g))¢0(n)g(n)dn
and S,g(€) = ¢0(E)fk (®(n,8))¢4(n)g(n)dn, by € c, o({&: p(€y,8) < €}), and

is identically one near the support of ¢ for all i. Using (4.9) to pass
X's across PE and the S 's, we obtain c¢(k) terms, the worst of which,
namely the one w1th all der1vat1ves on ¢N+2’ has Lp norm bounded by

e k1Z(N + )%

The Kernels of S_ and S!

We now prove that the kernels of S, and S! are functions in C:(M).
In Lemmas 7.1 and 9.1, we have shown that S, and its transpose S;t are
both infinitely smoothing operators. The same is true of S! and S;t.
Hence, the result follows from a more general result. Lacking an explicit

reference, we give a simple proof.

PROPOSITION 10.1. Let s(x,y) be compactly supported and in Ll,

separately in x and y and set Tf(x) = f ms(x,y)f(y)dy. Suppose that
R

for £€ L%, and all a,

[o%re| <c e,
L
[D%T*£] < c e,
L
Then, s(x,y) € C:(Rm x Rm).

Proof. Let (1 - A ) denote the pseudodifferential operator with
t/2

symbol (1 + Icl , t real, with | | the Euclidean norm.
It suffices to show that, for some &, (1 - Ax)'z(l - Ay)-ls(x,y) ec.
Choose % even, so that (1 - 4.)°%s €12 _®™). Then,
X x=x0 loc

IDifston @ - 8y ayl = 10,0 - ) sy Gy

Y=¥g
< Ca uniformly in Yo
and, similarly,

|(Ds(1 - Ax)-zs(x,y))(xo,y)| < CB uniformly in Xg

But, then, it follows that, for any o', B'

0508 1 - ap7ta - s hsum | < ¢

y aIB'
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which completes the proof.
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